期刊文献+

基于正规形理论的多馈入交直流输电系统非线性模式分析 被引量:1

Nonlinear mode analysis of multi - infeed AC/DC parallel system based on norm form theory
下载PDF
导出
摘要 传统的特征根分析法不能揭示电力系统的非线性相关作用。正规形理论将非线性系统通过坐标变换,使得原系统与一个线性系统二阶或更高阶等价。将该方法应用到电力系统稳定分析中,既保留了小信号法的优点,又考虑了不同振荡模式间的非线性作用,适用于系统大扰动后的低频振荡特性分析。在对一双馈入交直流并联系统建立动态方程的基础上,运用正规形理论,分析了多馈入交直流系统低频振荡模式的非线性相关作用。结果显示,系统中各种模式是相互影响的,不同运行方式下影响程度也不相同,当系统重载且直流带调制方式下时,区间振荡模式与直流调制模式间的非线性作用最强。时域仿真验证了这一结果。 Traditional eigenvalue analysis method can not reveal the nonlinear interaction of power system. However, the norm form theory makes nonlinear system 2-order or n-order equivalent to one linear system through coordinates transform. When used in power system stability analysis,it keeps the advantages of eigenvalue analysis method and oscillatory modes into account,so it is suitable for takes the nonlinear interaction between different low-frequency oscillation study of power system after large disturbance. Based on dynamic equations built for a dual-infeed AC/DC parallel system, the norm form theory is applied to the nonlinear mode interaction of power oscillation. Results show that the interaction exists between different oscillation modes, and its degree changes under different operation conditions. When the system is heavily stressed with DC power modulation, the interaction between area oscillation mode and DC power control mode is the strongest. Simulations validate the conclusion.
作者 杨秀 徐光虎
出处 《电力自动化设备》 EI CSCD 北大核心 2007年第8期6-10,共5页 Electric Power Automation Equipment
基金 上海市科委重大科技攻关项目(041612012) 上海市科技启明星项目(05QMX1432)~~
关键词 多馈入交直流输电系统 正规形 低频振荡 非线性相关作用 multi-infeed AC/DC system norm form lower frequency oscillation nonlinear interaction
  • 相关文献

参考文献16

二级参考文献49

  • 1高中文,于继来,柳焯.基于运行模式的电压稳定性分析及其调整方法[J].电力系统自动化,1996,20(2):23-26. 被引量:4
  • 2彭志炜,胡国根,韩祯祥.应用分支理论研究电力系统电压稳定性[J].电力系统自动化,1997,21(2):42-44. 被引量:8
  • 3Prabha Kundur.电力系统稳定与控制[M].北京:中国电力出版社,2002.. 被引量:2
  • 4薛禹胜.运动稳定性量化理论[M].南京:江苏科学技术出版社,1999.. 被引量:23
  • 5SALAM F M A, ARAPOSTATHIS A, VARAIYA P. Analytical expressions for the unstable manifold at equilibrium points in dynamical systems of differential equation[A].22nd IEEE Conference on Decision and Control[C].[s.l.]:Proceedings of 22nd Conference on Decision and Control, 1983. 1389-1392. 被引量:1
  • 6ZABORSZKY J,HUANG G,ZHENG B H. A counterexample on a theorem by Tsolas et al. and an independent result by Zaborszky[J]. IEEE Trans. on Automatic Control, 1988,33(3) :316-317. 被引量:1
  • 7CHIANG H D,WU F F,VARAIYA P. A BCU method for direct analysis of power system transient stability[J].IEEE Trans. on PAS, 1994,9(3) : 1194-1208. 被引量:1
  • 8WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos [M]. New York: Springer-Verlag, 1982. 被引量:1
  • 9SAHA S,FOUAD A A,KLIEMANN W H,et al. Stability boundary approximation of a power system using the real normal form of vector fields[Jl. IEEE Trans. on Power Systems, 1997,12(2) :797-802. 被引量:1
  • 10FOUAD A A,STANTON S E. Transient stability of a multimachine power system. Part I: Investigation of systemt rajectories[J]. IEEE Trans. on Power Apparatus and System, 1981,100(7) :3408-3416. 被引量:1

共引文献75

同被引文献50

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部