摘要
In this paper,we discuss a Schwarz alternating method for a kind of unboundeddomains, which can be decomposed into a bounded domain and a half-planar domain. Finite Element Method and Natural Boudary Reduction are used alternatively. The uniform geometric convergence of both continuous and discrete problems is proved. The theoretical results as well as the numerical examples show thatthe convergence rate of this discrete Schwarz iteration is independent of the finiteelement mesh size, but dependent on the overlapping degree of subdomains.
In this paper,we discuss a Schwarz alternating method for a kind of unboundeddomains, which can be decomposed into a bounded domain and a half-planar domain. Finite Element Method and Natural Boudary Reduction are used alternatively. The uniform geometric convergence of both continuous and discrete problems is proved. The theoretical results as well as the numerical examples show thatthe convergence rate of this discrete Schwarz iteration is independent of the finiteelement mesh size, but dependent on the overlapping degree of subdomains.
出处
《计算数学》
CSCD
北大核心
1997年第2期205-218,共14页
Mathematica Numerica Sinica
基金
国家自然科学基金!1933102
19472069