期刊文献+

结合ICA和PCA方法的胎儿心电提取 被引量:6

Fetal ECG Extraction by Combining Methods of ICA and PCA
下载PDF
导出
摘要 在生物医学信号处理领域,独立分量分析(PCA)和主分量分析(ICA)是两种广泛应用的方法。但是,这两种方法各有其优缺点。提出了一种新颖的方法,将ICA和PCA相结合,通过求相关的技术,分别取ICA和PCA方法的优点。将该方法应用于从母体腹部测得的多通道信号中提取胎儿心电信号的实验,得到令人满意的结果。研究结果表明,这种结合ICA和PCA的方法能够比较准确地分离出所需要的胎儿心电信号,进而可以对胎儿心电进行监护,因此在临床上具有一定的实用价值。 In the field of biomedical signal processing, independent component analysis (ICA) and principal component analysis (PCA) are two widely - used methods, But they both have their advantages and disadvantages, In this paper, a novel method of combining PCA and ICA is proposed. This method is applied to the fetal ECG extraction from the multi- channel signals getting from the mother's abdomen, The experiment results are satisfying. According to the analysis and experiment results, the method can extract the fetal ECG accurately, So the new method has the practicability in the application of clinic.
出处 《计算机技术与发展》 2007年第8期223-225,229,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60271024) 安徽省人才基金资助项目(2004Z028)
关键词 主分量分析 独立分量分析 胎儿心电 相关 principal component analysis independentcomponent analysis fetal ECG(FECG) correlation
  • 相关文献

参考文献6

  • 1Comon P,Jutten C,Herault J.Blind Separation of Sources,Part Ⅱ:Problem Statement[J].Signal Processing,1991,24(1):11-20. 被引量:1
  • 2Cichocki,Unbehauen R.Robust Neural Networks with On Line Learning For Blind Identification and Blind Separation of Source[J].IEEE Trans on Circuit and Systems,1996,43(11):894-906. 被引量:1
  • 3吴小培,李晓辉,张道信.多变量数据分析及应用研究[J].电子测量与仪器学报,2004,18(1):51-56. 被引量:4
  • 4Lee T W.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super -Gaussian sources[J].Neural Computation,1999,11 (2):409-433. 被引量:1
  • 5杨福生,洪波著..独立分量分析的原理与应用[M].北京:清华大学出版社,2006:205.
  • 6Hyvarinen A.A fast fixed-point algorithm for independent analysis[J].Neural Computation,1997,9:1483-1492. 被引量:1

二级参考文献7

  • 1Amari S, et al.A new learning algorithm for blind signal separation, Advances in Neural Information Processing Systems 8, 1996, MIT press, 757-763. 被引量:1
  • 2Lee T W, et al.Independent component analysis for sub-Gaussian and super-Gaussian mixtures, proc.4th Joint Symp.Neural Computation, 7, 132-139. 被引量:1
  • 3Jung TP, et al.Extended ICA removes artifacts from electroencephalographic recordings.Advances in Neural Information Processing Systems 10,1997. 被引量:1
  • 4Comon P.Independent component analysis, A new concept? Signal Processing, 1994,36:287-314. 被引量:1
  • 5Bell AJ and Sejnowske TJ, An information maximization approach to blind separation and blind deconvolution, Neural Computation, 1995 ;(7): 1129-1159. 被引量:1
  • 6吴小培,冯焕清,周荷琴,王涛.基于小波变换的脑电信号噪声消除方法[J].电路与系统学报,2000,5(3):96-98. 被引量:15
  • 7吴小培,冯焕清,周荷琴,王涛.独立分量分析及其在脑电信号预处理中的应用[J].北京生物医学工程,2001,20(1):35-37. 被引量:32

共引文献3

同被引文献66

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部