期刊文献+

一种新的基于ART的支持向量机多类分类方法 被引量:1

A Novel ART-based Multi-class Classification Method for SVM
下载PDF
导出
摘要 基于支持向量机的二值分类原理,提出了一种由自适应共振理论方法与支持向量机相结合的改进型多类分类方法.此方法改进了传统支持向量机的一对一多类分类方法;对于每个二值分类器的结果进行决策时没有采用投票原则,而是采用自适应共振理论网络融合二值分类器的输出信息,从而克服了当分类器输出结果接近于0时投票法容易出现决策错误和票数相同时无法决策的不足.此算法已应用于玻璃的分类.仿真实验证明,此方法具有较好的分类效果. Based on the principle of binary classification of support vector machine (SYM) , an improved multiclass classification method is developed, which combines the adaptive resonance theory with SVM. The proposed approach improves the one-against-one classifying algorithm of traditional SVMs. In the decision-making process of the results of each binary classifier, the voting principle is not'adopted; instead the adaptive resonance theory is used to fuse the output of each binary classifier. Thus this method avoids the existence of fusing errors when the binary classifier outputs approach zero, and overcomes the problem of refusing to fuse when the algorithm gets the same votes. The algorithm has been applied to glass-classification. Simulation experiments prove that the classification results are more accurate.
出处 《信息与控制》 CSCD 北大核心 2007年第4期455-459,466,共6页 Information and Control
基金 教育部流程工业自动化重点实验室基金资助项目(PAL200508) 辽宁省自然科学基金资助项目(20062033)
关键词 支持向量机(SVM) 多类分类 核函数 自适应共振理论(ART)网络 support vector machine ( SVM ) multi-class classification kernel function adaptive resonance theory (ART) network
  • 相关文献

参考文献6

  • 1Vapnik V N.Statistical Learning Theory[M].New York,USA:Wiley,1998. 被引量:1
  • 2李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004.. 被引量:81
  • 3He C,Girolami M,Ross G.Employing optimized combinations of one-class classifiers for automated currency validation[J].Pattern Recognition,2004,37(6):1085 - 1096. 被引量:1
  • 4袁曾任编著..人工神经元网络及其应用[M].北京:清华大学出版社;南宁,1999:373.
  • 5Lin T C,Yu P T.Centroid neural network adaptive resonance theory for vector quantization[J].Signal Processing,2003,83(3):649 -654. 被引量:1
  • 6Yang B S,Han T,Kim Y S.Integration of ART-Kohonen neural network and case-based reasoning for intelligent fault diagnosis[J].Expert Systems with Applications,2004,26(3):387-395. 被引量:1

共引文献80

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部