期刊文献+

改进的无奇异局部边界积分方程方法

Improved Non-Singular Local Boundary Integral Equation Method
下载PDF
导出
摘要 在局部边界积分方程方法中,当源节点位于分析域的整体边界上时,局部边界积分将出现奇异积分问题,这些奇异积分需要做特别的处理.为此,提出了对域内节点采用局部积分方程,而对边界节点直接采用移动最小二乘近似函数引入边界条件来解决奇异积分问题,这同时也解决了对积分边界进行插值引入近似误差的问题.作为应用和数值实验,对Laplace方程和Helmholtz方程问题进行了分析,取得了很好的数值结果.进而,在Helmholtz方程求解中,采用了含波解信息的修正基函数来代替单项式基函数进行近似.数值结果显示,这样处理是简单高效的,在高波数声传播问题的求解中非常具有前景. When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated spedally. Local integral equations were adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new algorithm. At the same time, approximation errors of boundary integrals reduce significantly. As applicalions awl numerical tests, Laplace equation and Helmholtz equation problems were considered and excellent numerical results were obtained. Furtherraore, when solving the Helmholtz problems, the modified basis functions with wave solutions were adopted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.
出处 《应用数学和力学》 EI CSCD 北大核心 2007年第8期976-982,共7页 Applied Mathematics and Mechanics
关键词 无网格方法 移动最小二乘近似 局部边界积分方程方法 奇异积分 meshless method moving least square approximation local boundary integral equation method singular integral
  • 相关文献

参考文献13

  • 1Fries Thomas-Peter,Matthies Hermann G.Classication and overview of mesh-free methods[R].Institute of Scientic Computing,Technical University Braunschweig Brunswick,Germay,2003. 被引量:1
  • 2张雄,刘岩著..无网格法[M].北京:清华大学出版社,2004:258.
  • 3Zhu T,Zhang J D,Atluri S N.A local boundary integral equation (LBIE) method in computaational mechanics,and a meshless discretization approach[J].Computational Mechanics,1998,21(3):223-235. 被引量:1
  • 4Sladek J,Sladek V,Atluri S N.Application of the local boundary integral equation method to boundary-value problems[J].International Applied Mechanics,2002,38(9):1025-1047. 被引量:1
  • 5龙述尧,熊渊博.关于薄板的无网格局部边界积分方程方法中的友解[J].应用数学和力学,2004,25(4):379-384. 被引量:6
  • 6LONG Shu-yao,ZHANG Qin.Analysis of thin plates by the local boundary integral equation (LBIE)method[J].Engineering Analysis With Boundary Elements,2002,26(8):707-718. 被引量:1
  • 7Sladek J,Sladek V,Atluri S N.Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties[J].Computational Mechanics,2000,24(6):456-462. 被引量:1
  • 8Zhu T,Zhang J,Atluri S N.A meshless local boundary integral equation (LBIE) method for solving nonlinear problems[J].Computational Mechanics,1998,22(2):174-186. 被引量:1
  • 9Chen H B,Lu P,Huang M G,et al.An effective method for finding values on and near boundaries in the elastic BEM[J].Computers and Structures,1998,69(4):421-431. 被引量:1
  • 10Chen H B,Lu P,Schnack E.Regularized algorithms for the calculation on and near boundary in 2D elastic BEM[J].Engineering Analysis with Boundary Elements,2001,25(10):851-876. 被引量:1

二级参考文献16

  • 1布瑞比亚 龙述尧等(译).边界单元法的理论和工程应用[M].北京:国防工业出版社,1988.. 被引量:3
  • 2Zhu T, Zhang J D, Atluri S N. A local boundary integral equation(LBIE) method in computational mechanics, and a meshless discretiz-on approach[ J]. Computational Mechanics, 1998,21 (2):223-235. 被引量:1
  • 3Belytschko T,Krongauz Y,Organ D,et al.Meshless methods:an overview and recent developments[J].Computer Methods in Applied Mechanics and Engineering,1996,139:3-47. 被引量:1
  • 4Zhang J,Yao Z,Tanaka M.The meshless regular hybrid boundary node method for 2D linear elasticity[J].Eng.Anal.Bound.Elem.,2003,27(3):259-268. 被引量:1
  • 5Zhu T,Zhang J D,Atluri S N.A local boundary integral equation (LBIE) method in computational mechanics,and a meshless discretization approach[J].Computational Mechanics,1998,21 (3):223-235. 被引量:1
  • 6Sladek J,Sladek V,Atluri S N.Application of the local boundary integral equation method to boundary-value problems[J].Int.Appl.Mech.,2002,38 (9):1 025-1 047. 被引量:1
  • 7Zhu T,Zhang J,Atluri S N.A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems[J].Eng.Anal.Bound.Elem.,1999,23 (5-6):375-389. 被引量:1
  • 8Zhu T,Zhang J,Atluri S N.A meshless local boundary integral equation (LBIE) method for solving nonlinear problems[J].Comp.Mech.,1998,22 (2):174-186. 被引量:1
  • 9Atluri S N,Sladek J,Sladek V,et al.The local boundary integral equation (LBIE) and it's meshless implementation for linear elasticity[J].Comp.Mech.,2000,25 (2-3):180-198. 被引量:1
  • 10Sladek J,Sladek V,Van Keer R.Meshless local boundary integral equation method for 2D elastodynamic problems[J].Int.J.Numer.Methods Eng.,2003,57 (2):235-249. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部