摘要
文章对文[5]中引理2的证明中两个关键点作了进一步阐述,并揭示了引理2证明的理论根据实质上是集合论、映射和一一对应及数列的排列规律;而且给出了“必存在符合条件的n1、n2值使n1≠n2”的证明。
In this paper the author gives further elaborateness to two key points for the proving process of lemma 2 that belong to the proof of the Erdos conjecture(i, e The equation 4/n= 1/x+ 1/y+ 1/z have positive soultion x, y, z for all the positive integer, n≤1). Furthermore, the theory basis of the proving process of lemma 2 include set theory,mapping theory,one to one correspondence and the rule of progression,also given the proof to "There must be coincided values n1 and n2 ,n1≠n2 ".
出处
《新疆师范大学学报(自然科学版)》
2007年第2期35-39,共5页
Journal of Xinjiang Normal University(Natural Sciences Edition)
关键词
一一映射
一一对应关系
数列的排列规律
基数
可数无穷集
构造完成
bijection
one to one correspondence
the rule of progression permutation
cardinal number
countable infinite sets construction complete