期刊文献+

严格反馈型随机非线性系统输出反馈滑模控制

Variable structure sliding mode control of a strict-feedback stochastic nonlinear system
下载PDF
导出
摘要 研究了一类带有不确定性参数的严格反馈型随机非线性系统的输出反馈镇定问题,主要是采用变结构滑模控制方法(SMC)来设计镇定控制器。首先根据系统的结构和输出状态构造了随机非线性状态观测器,并针对结构参数的不确定性,采用梯度自适应调节律,然后基于系统的观测状态选择滑动模切换流形,给出了不含噪声激励的变结构控制律,并证明滑动模的可达性和闭环系统滑模运动的稳定性,最后讨论了滑模控制的抖振抑制问题。通过系统仿真,与其它鲁棒控制方法进行比较,证明了本方法不仅能够有效地镇定该类随机非线性系统,并且具有一些更好的控制性能。 The output-feedback-based stamllty proudem for systems with parametric uncertainties is studied and a stabilization controller is designed mainly by adopting variable structure sliding mode controlling (SMC) techniques. Firstly a stochastic nonlinear state-observer is constructed according to the structural characteristics and the output states of the given system, and for the parametric uncertainties, an adaptive adjusting law is proposed via the states' grads. And then a sliding mode switching manifold is selected based on the estimated states from the state-observer, following which a SMC law is proposed. Both the accessibility of the sliding mode and the stability of the closed-loop system on the sliding mode surface are confirmed in the paper. Lastly it' s discussed about how to eliminate transient flattering brought out by the SMC control law. By an illustrative system' s simulation and comparison with another robust controlling method for such a system, it can be seen that the presented control scheme here is effective to stabilizing such a stochastic nonlinear system and has some better controlling performance.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2007年第7期1121-1125,共5页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60374023)
关键词 严格反馈型随机非线性系统 输出反馈镇定 自适应调节 变结构滑模控制 strict-feedback stochastic nonlinear system output feedback stabilizations adaptive adjusting variable structure sliding mode control
  • 相关文献

参考文献11

二级参考文献42

  • 1郑锋,程勉,高为炳.控制存在时滞的系统的变结构控制[J].控制与决策,1993,8(2):95-99. 被引量:11
  • 2高为炳.变结构控制研究的发展与现状[J].控制与决策,1993,8(4):241-248. 被引量:30
  • 3夏常弟,李治.具有随机量测噪声的变结构控制[J].控制与决策,1994,9(3):226-229. 被引量:7
  • 4[17]Runolfsson T. The equivalence between infinite horizon control of stochastic systems with exponential-of-integral performance index and stochastic differential games. IEEE Transaction on Automatic Control, 1994, 39: 1551~1563 被引量:1
  • 5[18]Whittle P. Risk-Sensitive Optimal Control Chichester. New York: John Wiley and Sons, 1990 被引量:1
  • 6[19]Fleming W H, McEneaney W M. Risk-sensitive control on an infinite time horizon. SIAM J Control & Optimization, 1995, 33: 1881~1915 被引量:1
  • 7[20]Nagai H. Bellman equations of risk-sensitive control. SIAM J Control & Optimization, 1996, 33: 74~101 被引量:1
  • 8[21]Kokotovic P, Arcak M. Constructive nonlinear control: a historical perspective. Automatica, 2000 被引量:1
  • 9[22]Freeman R A, Kokotovic P V. Robust Nonlinear Control Design, State-space and Layapunov Techniques. Boston: Birkh?user, 1995 被引量:1
  • 10[23]Gihman R A, Skorohod A V. Stochastic Differential Equations. New York: Springer-Verlag, 1972 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部