期刊文献+

漏磁无损检测中的缺陷信号定量解释方法 被引量:6

Quantitative Interpretation Methods for Magnetic Flux Leakage Testing Signals
下载PDF
导出
摘要 由于在漏磁场正问题求解、信号反演等方面还没有形成系统的理论和方法,因此漏磁检测信号的定量解释一直是无损检测技术领域的研究重点。在综述国内外漏磁信号定量解释方法研究现状的基础上,分析了由漏磁信号定量描述缺陷特征的技术特点以及模式匹配法、统计分析法的局限性,重点探讨了利用人工神经网络方法解释漏磁信号的优点和不足,并指出了可视化、多传感器信息融合等漏磁信号定量解释技术的研究发展方向。 Because it is still difficult to find an efficient theory and method systemically in the solutions to electromagnetic fields and its inverse problems, the signal quantitative interpretation methods have been the key to magnetic flux leakage testing technique all the time. Based on the review of current research and development for MFL signal interpretation methods, the difficulty of defect quantitative characterization via MFL testing signals was analyzed, and the capabilities and limitations of the model matching method and the statistical relation model were presented. The advantages and disadvantages of the artificial neural network were mainly discussed. And such research tendencies of the MFL signals interpretation as visualization, multi-sensors data fusion were pointed out.
出处 《无损检测》 北大核心 2007年第7期407-411,426,共6页 Nondestructive Testing
基金 国家自然科学基金资助项目(50305017) 中国博士后科学基金资助项目(2005038358) 湖北省教育厅青年人才基金项目资助(2007A098)
关键词 漏磁检测 定量解释 人工神经网络 Magnetic flux leakage testing Quantitative interpretation Artificial neural network
  • 相关文献

参考文献28

  • 1Chen Xudong,Ni Guangzheng,Yang Shiyou.An Improved Tabu Algorithm applied to global optimization of inverse problems in electromagnetics[J].IEEETransaction on Magnetics,2002,38(2):1069-1072. 被引量:1
  • 2Mcfall G,Miracky R.A noise-tolerant solution to the magnetostatic inverse problem for nondestructive evaluation[J].J Appl Phys,1993,174(1):2036-2045. 被引量:1
  • 3刘志平,康宜华,杨叔子.漏磁检测信号的反演[J].无损检测,2003,25(10):531-535. 被引量:8
  • 4Hwang K,Mandayam S,Udpa S S.Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J].NDT & E International,2000,33(5):531-545. 被引量:1
  • 5Lunin V,Barat V,Podobedov D.Neural networkbased crack parameterization using wavelet preprocessing MFL signal[J].In Review of Progress in Qnantitative Nondestructive Evaluation,2001,20(6):641. 被引量:1
  • 6Chen Z,Preda G.Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach[J].IEEE Transactions on Magnetics,2002,38(2):1025-1028. 被引量:1
  • 7Zhang W,Guo J T,Huang S L.Application of neural network in metal loss evaluation for gas conducting pipelines[J].Advances in Neural Networks,2006,(3):1254-1260. 被引量:1
  • 8Christen R,Bergamini A.Automatic flaw detection in NDE signals using a panel of neural networks[J].NDT & E International,2006,39(7):547-553. 被引量:1
  • 9Ramuhalli P,Udpa L,Udpa S S.Electromagnetic NDE signal inversion by function-approximation neural networks[J].IEEE Transactions on Magnetics,2002,38(6):3633-3642. 被引量:1
  • 10Ramuhalli P,Udpa L,Udpa S S Neural networkbased inversion algorithms in magnetic flux leakage nondestructive evaluation[J].Journal of Applied Physics,2003,93(10):8274-8276. 被引量:1

二级参考文献57

共引文献43

同被引文献126

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部