期刊文献+

自组织神经网络在流域土壤水分含量空间模式识别中的应用 被引量:1

Application of Self-Organizing Neural Networks in Identification of Soil Moisture Spatial Patterns
下载PDF
导出
摘要 由于土壤水分含量受众多因素的影响,空间变异性很大,给土壤水分含量空间分布的研究带来了很大的困难。空间模式识别是处理土壤水分含量空间数据的方法之一,能够分析得到土壤水分含量空间数据的聚类结果。基于自组织特征映射和自适应共振理论的自组织神经网络模型在空间数据模式识别中得到广泛应用,针对澳大利亚tar-rawarra试验流域土壤水分含量的观测数据,应用自组织神经网络,建立动态土壤水分含量的空间模式识别模型,并用半变异函数对识别结果进行检验,实例研究表明该方法是一种行之有效的方法。 It is very difficult to study soil moisture spatial distribution because of its great spatial variability affected by many factors. The spatial pattern identification is one of the ways to deal with the soil moisture spatial data, which can obtain clustering of soil moisture spatial data. The self-organizing neural network models find wide uses in identification spatial soil moisture pattern, which based on the self-organizing reflection and self-adaptive resonance theory. A dynamic soil moisture spatial identification model is developed against at the soil moisture observation data in the Tarrawarra Catchment in Australia using self-organizing neural network. The semi-variance function is used to verify the identification result, and the results of verification indicate that the method is a valid one.
出处 《中国农村水利水电》 北大核心 2007年第7期14-16,21,共4页 China Rural Water and Hydropower
关键词 土壤水分含量 自组织神经网络 空间模式识别 soil moisture self-organizing neural networks spatial pattern identification
  • 相关文献

参考文献8

  • 1Georgakako K P.Preface of special issue:Soil Moisture theories and observation[J].Hydrol.1996,184. 被引量:1
  • 2阎平凡,张长水编著..人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:435.
  • 3Paolo D'Odorrico.Ignacio Rodriguez-Iturbe:Space-time self-organization of mesoscale rainfall and soil moisture[J].Advances in Water Resource,2000,23:349-357. 被引量:1
  • 4S Islam,R Kothari.spatial organization and characteriz -ation of soil physical properties using self-organizing maps[A].Govindaraju R S,Rao A R.Artificial Neural Networks in Hydrology,Series:Water Science and Technology Library[C].2000. 被引量:1
  • 5H S Shin,J D Salas.Spatial analysis of hydrologic and environmental data based on artificial neural networks[A].Govindaraju R S,Rao,A R.Artificial Neural Networks in Hydrology,Series:Water Science and Technology Library[C].2000. 被引量:1
  • 6W W Andrew,B G Rodger.the Tarrawrra data set soil patterns,soil charactertics,and hydrological flux Measure-ments[J].Water Resource Research,1998,34(10):1766-2768. 被引量:1
  • 7张翔,刘国东,丁晶.自组织神经网络在地下水动态分类中的应用[J].工程勘察,1998,26(2):29-31. 被引量:11
  • 8徐梅,隋吉东,刘振忠.土壤水分含量的理论分析及预测模型[J].生物数学学报,1999,14(1):95-99. 被引量:12

二级参考文献4

共引文献21

同被引文献16

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部