摘要
本文证明了(1)如果X具有有界完备有限维Schavder分解,则X具有RNP;(2)如果{x<sub>2</sub>)是X的单调基,X<sup>☆</sup>局部k-一致园(LKUR),那么{x<sub>2</sub>}是收缩基,从而X<sup>☆</sup>具有基。
It is showm: (1) X has the Radcn-Nikodyra property when X has aK-boundedly complete finete dimensional decomposition (2). if (xn) is a monotomebasis of X and X is locally k-uniformly rotund, then (xn) is Shrinking andX has bases.
出处
《工程数学学报》
CSCD
1990年第1期33-38,共6页
Chinese Journal of Engineering Mathematics