期刊文献+

地表参量反演与遗传自组织神经元网络联合估算子像元地表温度 被引量:3

Estimating Subpixel Surface Temperature Coupling Retrieval Land Surface Parameters with GA-SOFM Neural Network
下载PDF
导出
摘要 在热红外遥感成像模拟中,高空间分辨率的地表温度场景可以由中、低分辨率的热红外遥感数据估算得出。基于可见光-近红外数据反演的若干地表参量和低分辨率的地表温度数据,在二者间引入遗传自组织神经元网络,建立非线性像元分解方法,最终获得高空间分辨率的地表温度场景。利用ASTER卫星产品数据对该方法进行了验证,结果表明:对于无法直接进行高分辨率地表温度反演,或缺少大量地表先验知识情况下,该方法只需利用两组遥感数据即可估算出不同地表覆盖下子像元地表温度,方法简便易行,精度较高,为快速模拟和估算高分辨率地表温度分布提供了一条新途径。最后对方法的估算精度、适用性及应用前景进行了探讨。 During the simulation of thermal infrared remote sensing, the high spatial resolution scene of land surface temperature can be estimated by moderate and lower resolution thermal infrared data. The GA-SOFM (Genetic Algorithms & Self-Organizing Feature Maps)-Artificial Neural Network (ANN) can be used to construct the relation between the inverted land surface parameters based on VNIR data and lower resolution data, which is also considered the unmixing process of mixed pixel. Finally, the high resolution land surface scene can be generated by this method. In this paper, the discussion and analysis the accuracy, applicability and prospect about this method are carried out. It is easy to put into operation with higher accuracy. Utilizing the ASTER data to test it, conclusions show that subpixel land surface temperature under different land cover types can be retrieved based on a pair of remote sensing data if we don' t directly invert high resolution land surface temperature or run short of experienced knowledge about land surface. Also, it is a new approach to quickly estimate and simulate high resolution land surface temperature.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第4期484-492,共9页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(40401042 40371087) 中国科学院知识创新工程重要方向性项目(KZCX3-SW-334 KZCX3-SW-338-2) 中国科学院百人计划(KZCX0415) 国家教育部留学回国人员科研启动基金重点项目(HX040013) 国防科学技术工业委员会项目(KJSX0401)资助
关键词 子像元 地表温度 地表参量 遗传自组织特征映射 神经元网络 subpixel land surface temperature land surface parameters GA-SOFM (genetic algorithms & self-organizing feature maps) artificial neural network (ANN)
  • 相关文献

参考文献10

  • 1Kustas W P,Norman J M,Anderson M C,et al.Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship.Remote Sensing of Environment,2003,85(4):429-440. 被引量:1
  • 2Norman J M,Divakarla M,Geol N S.Algorithms for extracting information from remote thermal-IR observations of the Earth's surface.Remote Sensing of Environment,1995,51 (1):157-168. 被引量:1
  • 3Fisher A.A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters.Remote sensing and environment,1994,4:220-230. 被引量:1
  • 4Carlson T N,Gillies R R,Perry E M.A method to make use of thermal infrared temperature and NDVI measurements to infer soil water content and fractional vegetation cover.Remote Sensing Reviews,1994,52:45-59. 被引量:1
  • 5刘培君,张琳,艾里西尔.库尔班,常萍,李良序,镨拉提,赵兵科.卫星遥感估测土壤水分的一种方法[J].遥感学报,1997,1(2):135-138. 被引量:86
  • 6Jackson T J,Chen Daoyi,Cosh M, et al.Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans.Remote Sensing of Environment,2004,92:475-482. 被引量:1
  • 7Wang Changyao,Qi Shuhua,Niu Zheng,et al.Evaluating soil moisture status in China using the temperature vegetation dryness index (TVDI).Can J Remote sensing,2004,30(5):671-679. 被引量:1
  • 8肖青.机载遥感数据的定量化研究.北京:中国科学院遥感应用研究所,2002.6. 被引量:1
  • 9Noilhan J, Mahfouf J F.The ISBA land surface parameterization scheme.Global Planet Change,1996,13:145-159. 被引量:1
  • 10哈斯巴干,马建文,李启青.ASTER数据的自组织神经网络分类研究[J].地球科学进展,2003,18(3):345-350. 被引量:9

二级参考文献13

共引文献93

同被引文献33

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部