期刊文献+

基于脊波变换的体数据压缩编码方法

Cubic data compression coding method based on ridgelet transform
下载PDF
导出
摘要 体数据的数据量大、数据间的相关性强、拥有大量的线或面结构,因此需要研究有效的压缩编码方法。脊波变换作为一种新的时频分析工具,在处理线或面的奇异性时有它适用的一面。在介绍脊波变换理论的基础上,将脊波变换的思想应用到体数据的压缩编码中。文中两种压缩策略的主要思想分别为:策略1先将体数据划分成切片组,再对每一张切片做二维脊波变换,然后进行量化和熵编码;策略2直接对体数据做类似于三维脊波变换的变换,然后进行量化和熵编码。比较而言,策略1实现简单,策略2能获得更高的压缩比。两种策略都具有较强的鲁棒性,且能实现嵌入式编码。该方法已应用到实际工业CT体数据的压缩编码中,还可用于其它类型体数据的压缩编码中。 The cubic data are enormous,the relationship among them are strong,and there are lots of singularities as line or plane,so we need an effective compression coding method.The ridgelet,as a new analytic tool,has the good performance for describing the signals which have super-plane singularities in high dimensions.In this paper,on the basis of the theory of the ridgelet transform,two kind of compression strategies are adopted to the cubic data compression coding.The first one is the idea of the 2D ridgelet transform applied on each slice of the cubic data,the second one is the idea of the similar 3D ridgelet transform applied on the whole cubic data directly.Comparatively speaking,the first one is simpler and the second one has more compression ability.Though each of the two strategies have its own strong point,they have the same characteristics:strong robustness and embedded coding.Our methods have been applied to the cubic data in ICT,they can be applied to other cubic data too.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第21期193-196,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60672098) 重庆市科技公关计划(the Key Tech-nologies R&D Program of Chongqing City China under Grant No.CSTC2006AB3027)。
关键词 压缩编码 体数据 脊波变换 鲁棒性 嵌入式编码 compression coding cubic data ridgelet transform robustness embedded coding
  • 相关文献

参考文献13

二级参考文献28

  • 1赵改善.小波变换与地震数据压缩[J].石油物探,1994,33(4):19-28. 被引量:10
  • 2E J Candes. Ridgelet: Theory and Applications:[Ph D Thesis] [D]. Department of Statistics, Stanford University,1998. 被引量:1
  • 3E J Candes, D L Donoho. Ridgelets: A Key to Higher-Dimensional Intermittency[J]. Phil Trans R Soc Lond A,1999, 357: 2495-2509. 被引量:1
  • 4M N Do,M Vetterli.The Finite Ridgelet Transform for Image Representation[J]. IEEE Trans on Image Processing,2003, 12 (1): 16-28. 被引量:1
  • 5G Beylkin. Discrete Radon Transform[J]. IEEE Trans on ASSP, 1987, 35 (1): 162-172. 被引量:1
  • 6S G Mallat. A Theory for Multi-Resolution Signal Decomposition: The Wavelet Representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989, 11 (7): 674-693. 被引量:1
  • 7M N Do,M Vetterli. Orthonormal Finite Ridgelet Transform for Image Compression[A]. Proc IEEE Int' 1 Conf on Image Processing (ICIP)[C]. 2000. 被引量:1
  • 8Donoho D L.Digital Ridgelet transform via rectopolar coordinate transform [R].Stanford: Department of Statistics,Stanford University,1998. 被引量:1
  • 9Beylkin G.Discrete Radon transform[J].IEEE Tans ASSP,1987,35(1):162-172. 被引量:1
  • 10Donoho D L.De-noiseing by soft-thresholding [J].IEEE Trans Infom Theory,1995,41(5):613-627. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部