摘要
对基于AFM的机器人化纳米操作系统而言,一个关键问题是如何实现纳米操作时探针的高精度驱动与定位。对此,本文基于对压电陶瓷驱动器的迟滞/非线性特性及现有驱动方法的详细分析,提出"基于复现扫描轨迹的驱动方法"来对操作时的驱动器进行驱动;另外,还对管式驱动器弯曲运动所产生的运动学耦合误差、探针悬臂变形所引起的针尖偏移误差进行了定量分析与补偿。采用上述驱动方法及进行误差补偿后,可以大大提高探针的定位精度,从而使纳米操作与装配得以高精度进行。纳米刻画实验验证了该新型驱动方法及误差补偿的有效性。
In AFM based robotic nanomanipulation system, one of the key technical problems is to realize high accurate actuating and positioning of the AFM probe. To solve the problem, based on analyzing the hysteresis & nonlinear characteristics of the AFM PZT actuator and previous actuating methods, a new actuating method called" actuating method based on reappearing the scanning trajectory" is presented to actuate the PZT actuator. Besides, two kinds of probe positioning errors, namely kinematics coupling errors due to tube actuator bend motion, and probe tip positioning errors caused by cantilever deformation, are analyzed quantitively and compensated to further improve the probe positioning accuracy. Due to adopting the new actuating method and positioning error compensation method, the positioning accuracy of AFM probe can be significantly improved and thus nanomanipulation and nanoassembly can be performed accurately. Nanolithography experiments were presented to verify the effectiveness of the new actuating method and positioning error compensation method.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2007年第7期1223-1228,共6页
Chinese Journal of Scientific Instrument
基金
国家自然基金(60635040
60575060
60575050)
863计划(2006AA042320)
辽宁省优秀青年科研人才培养基金(2005220025)资助项目
关键词
驱动器驱动
探针定位
复现扫描轨迹
运动学耦合误差
悬臂变形
actuator actuating
probe positioning
reappearing the scanning trajectory
kinematics coupling error
cantilever deflection