期刊文献+

结合免疫机制的并发定位与建图多目标进化算法 被引量:3

Multi-Objective Evolutionary Algorithms for SLAM with Immunity
下载PDF
导出
摘要 由于基于进化算法的移动机器人并发定位与建图问题本质上具有多目标特性,因此将该问题转化成为多目标优化问题进行处理.为了有效地提高基于多目标进化算法的移动机器人并发定位与建图方法的效率,提出了结合免疫机制的局部搜索方法.为此,构造了称之为关键点栅格吸引操作的局部搜索方法,它运用了所针对问题的领域知识.通过移动机器人物理实验证实了所构造算法的计算代价比其他基于进化算法的单目标优化方法少,获取的地图准确性更高. The simultaneous localization and mapping problem with evolutionary algorithms is translated to a multiobjective optimization problem since it inherently possesses of multi - objective characters, and in order to efficiently solve the simultaneous localization and mapping problem with multi - objective evolutionary algorithms, a local searcher with immunity is constructed. The local searcher employs domain knowledge of the problem, which is named as a key point grid pulling that is developed in the paper. The experiment results of a real mobile robot indicate that the computational expensiveness of designed algorithms is less than other evolutionary algorithms of single - objection for simultaneous localization and mapping and accuracy of obtained maps are higher.
作者 李枚毅
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2007年第2期111-117,共7页 Natural Science Journal of Xiangtan University
基金 湖南省教育厅重点科研资助项目(11KZ/KZ02006) 湘潭大学博士启动基金资助项目(05QDZ23)
关键词 并发定位与建图 关键点栅格吸引 多目标进化算法 免疫机制 SLAM key point grid pulling multi - objective evolutionary algorithms immunity
  • 相关文献

参考文献13

  • 1Dissanayake G,Newman P,Clark S,et al.A solution to the simultaneous localization and map building (SLAM) problem[C]//Transactions of Robotics and Automation,2001. 被引量:1
  • 2Leonard J J,Durrant-Whyte H F.Directed Sonar Sensing for Mobile Robot Navigation[M].Kluwer,1992. 被引量:1
  • 3Thrun S.Robotic mapping:A survey[C]//Lakemeyer G,Nebel B.Exploring Artificial Intelligence in the New Millenium.Kaufmann M,2002 被引量:1
  • 4迟健男,徐心和.移动机器人即时定位与地图创建问题研究[J].机器人,2004,26(1):92-96. 被引量:53
  • 5Montemerlo M,Thrun S,Koller D,et al.Fast SLAM:A factored solution to the simultaneous localization and mapping problem[C]// Proceedings of the AAAI National Conference on Artificial Intelligence.Canada:Edmonton,2002. 被引量:1
  • 6Duckett T.A genetic algorithm for simultaneous localization and mapping[C]//IEEE International Conference on Robotics and Automation.Taipei,2003:434-439. 被引量:1
  • 7Jiao L C,Wang L.A novel genetic algorithm based on immunity[J].IEEE Trans Syst Man Cybern A,2000,30(5):552-561. 被引量:1
  • 8De Castro L N,Vov Zuben F J.Learning and optimization using the clonal selection principle[J].IEEE Trans.Evolutionary Computation,2002,6(3):239-251. 被引量:1
  • 9Mikkel E E,Jensen T.Guiding Single-Objective Optimization Using Multi-objective Methods[M].EvoWork-shops,2003:268-279. 被引量:1
  • 10Coello C C A.A short tutorial on evolutionary multiobjeetive optimization[C]//1st Int Conf on Evolutionary Multi-Criterion Optimization.New York:Springer-Verlag.Lecture Notes in Computer Science,2001:21 -40. 被引量:1

二级参考文献13

  • 1[1]Jensfelt P, Cgrustebseb H. Laser based position acpuisition and tracking in an indoor environment[A]. Proceedings of IEEE International Symposium on Robotics and Automation[C]. Mexico: 1998,l. 331-338. 被引量:1
  • 2[2]Davison A J, Nobuyuki K. 3D simultaneous localization and map building using active vision for a robot moving on undulating terrain[A]. Proceedings of the IEEE International Conference on Computer Vision and Recognization[C]. Hawail: 2001,1. 384-391 . 被引量:1
  • 3[3]Se S, Lowe D, Little J. Vision-based mobile robot localization and mapping using scale-invariant features[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Korea: 2001. 2051-2058. 被引量:1
  • 4[4]Leonard J, Durrant-Whyte H F. Dynamic map building for an autonomous mobile robot[J]. International Journal of Robotics Research, 1992, 11(4): 286-298. 被引量:1
  • 5[5]Moutarlier P, Chatila R. Stochastic multisensory data fusion for mobile robot localization and environmental modeling[A]. Proceedings of the International Symposium on Robotics Research[C]. 1990. 85-94. 被引量:1
  • 6[6]Montemerlo M, Thrun S. FastSLAM: a factored solution to the simultaneous localization and mapping problem[A]. Proceedings of the Eighteenth National Conference on Artificial Intelligence[C]. Edmonton: AAAI Press, 2002. 593-598. 被引量:1
  • 7[7]Hu S, Hu D D, Gu O. Landmark-based navigation of mobile robots in manufacturing[A]. IEEE International Conference on Emerging Technologies & Factory Automatin[C]. Spain: 1999. 18-21. 被引量:1
  • 8[8]Leonard J, Durrant-White H F. Directed Sonar Sensing for Mobile Robot Navigation[M]. Boston: Kluwer Academic Publishers, 1992. 208-216. 被引量:1
  • 9[9]Thrun S. Particle filters in robotics[A]. Proceedings of Uncertainty in AI (UAI- 2002)[C]. San Francisco: Morgan Kaufmann Publishers, 2002.511-518. 被引量:1
  • 10[10]Feder H J S. Simultantous stochastic mapping and localization[D]. USA: MIT, 2001. 被引量:1

共引文献52

同被引文献27

  • 1王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 2陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:59
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4Yin B, Wei Z Q, Zhuang X D. Robust mobile robot localization using an evolutionary particle filter[M]//Lecture Notes in Computer Science (vol.3801). Berlin, Germany: Springer-Verlag, 2005: 279-284. 被引量:1
  • 5Moreno L, Munoz M L, Garrido S, et al. Evolutionary filter for mobile robot global localization[C]//IEEE International Symposium on Intelligent Signal Processing. Piscataway, NJ, USA: IEEE, 2007: 891-896. 被引量:1
  • 6Chatterjee A, Matsuno E Improving EKF-based solutions for SLAM problems in mobile robots employing neuro-fuzzy supervision[C]//IEEE International Conference on Intelligent Systems. Piscataway, NJ, USA: IEEE, 2006: 683-689. 被引量:1
  • 7Kennedy J, Eberhart R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 1995: 1942-1948. 被引量:1
  • 8Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences[M]// Lecture Notes in Computer Science (vol.1447). Berlin, Germany: Springer-Verlag, 1998: 601-610. 被引量:1
  • 9Montemerlo M, Thrun S. Simultaneous localization and mapping with unknown data association using FastSLAM[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 1985-1991. 被引量:1
  • 10叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部