期刊文献+

第三组元添加对Fe—Ga合金相组成和磁致伸缩性能的影响 被引量:21

EFFECTS OF THE THIRD ELEMENT ADDITIONS ON PHASE CONSTITUTION AND MAGNETOSTRICTION OF Fe-Ga ALLOYS
下载PDF
导出
摘要 系统地研究了铸态和淬火态Fe_(81)(Ga_(1-x)M_x)19(x=0,0.1,0.2,0.3;M=Si,Ge,Sn)合金的相组成和磁致伸缩特性.结果表明:Si,Ge元素分别添加到Fe_(81)Ga_(19)合金中保持了合金的A2相结构.添加少量的Si或Ge(x=0.1)不会降低合金的饱和磁致伸缩值,其中淬火态Fe_(81)(Ga_(0.9)Ge_(0.1))_(19)样品的饱和磁致伸缩值比淬火态Fe_(81)Ga_(19)合金明显提高;此后,继续增加Si或Ge含量,饱和磁致伸缩值显著下降.铸态和淬火态Fe_(81)(Ga_(1-x)Sn_x)_(19)(x=0.1,0.2,0.3)合金为A2和Fesn(Ga)双相结构.随着Sn含量增加.非磁性FeSn(Ga)相数量增加,合金的饱和磁致伸缩值呈降低趋势.其中,在铸态Fe_(81)(Ga_(0.9)Sn_(0.1))_(19)合金中获得了最大的饱和磁致伸缩值(41×10^(-6)),略高于铸态Fe_(81)Ga_(19)合金. Phase constitutions and magnetostrictions of Fe81(Ga1-xMx)19(x = 0, 0.1, 0.2, 0.3; M = Si, Ge, Sn) alloys were studied. The results indicated that all of Fe-Ga-Si and Fe-Ga-Ge ternary as-cast and quenched states kept a disordered A2 phase structure (Fe81Ga19). Substitution of Si or Ge for Ga will not noticeably reduce magnetostriction for x=0.1. Wherein, the saturation magnetostriction of quenched Fe81(Ga0.9Ge0.1)19 alloy was much higher than that of quenched Fe81Ga19 alloy. Further increasing Si and Ge contents, the saturation magnetostrictions of Fe81 (Ga1-xMx)19(M = Si, Ge) decrease sharply. The as-cast and quenched Fe81(Ga1-xSnx)19(x=0.1, 0.2, 0.3) comprised FeSn(Ga) phase and A2 matrix. With increasing Sn content, the saturation magnetostrictions of as-cast and quenched Fe-Ga-Sn alloys decreased owing to the appearance of much more non-ferromagnetic FeSn(Ga) phase. The maximum saturation magnetostriction value observed in the as-cast Fe81 (Ga0.9Sn0.1)19 alloys was 41×10^-6, slightly higher than that of the as-cast Fe81Ga19 alloy.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2007年第7期683-687,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金项目50471003 50531010 教育部新世纪优秀人才支持计划项目NCET-04-0165资助~~
关键词 FE-GA合金 元素添加 相结构 磁致伸缩 Fe-Ga alloy, element addition, phase constitution, magnetostriction
  • 相关文献

参考文献11

  • 1Clark A E,Wun-Forgle M,Restorff J B,Lograsso T A,Cullen J R.IEEE Trans Magn,2001;37:2678 被引量:1
  • 2Wu R Q.J Appl Phys,2002;91:7358 被引量:1
  • 3Cullen J R,Clark A E,Wun-Fogle M,Restorff J B,Lograsso T A.J Magn Magn Mater,2001;226-230:948 被引量:1
  • 4Liu G D,Liu L B,Liu Z H,Zhang M,Chen J L,Li J Q,Wu G H,Li Y X,Qu J P,Chin T S.Appl Phys Lett,2004;84:2124 被引量:1
  • 5Srisukhumbowornchai N,Guruswamy S.J Appl Phys,2002;92:5371 被引量:1
  • 6Clark A E,Restorff J B,Wun-Fogle M,Lograsso T A.IEEE,Magnotics Conference 2000,2000:171 被引量:1
  • 7Lograsso T A,Ross A R,Schlagel D L,Clark A E,Wun-Fogle M.J Alloys Compd,2003;95:350 被引量:1
  • 8Kawamiya N,Adachi K,Nakamura Y.J Phys Soc Jpn,1972;33:1318 被引量:1
  • 9Wagini H.Naturforsch Z,1967;A22(1):143 被引量:1
  • 10Ikeda O,Kainuma R,Ohnuma I,Fukamichi K,Ishida K.J Alloys Compd,2002;347:198 被引量:1

同被引文献251

引证文献21

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部