期刊文献+

电感式混沌测量的特性研究

Study of Chaotic Measurement Using Inductor as Sensitive Parameter
下载PDF
导出
摘要 将混沌系统用于测量,是测量研究及非线性科学应用研究的一个突破,电感式混沌测量系统是一种以电感为敏感元件的混沌测量系统,能实现微弱直流电压的测量,并且具有极高的精度和良好的线性度.但此理论是否有不足之处?在分析电感式混沌测量理论基础上,深入地探讨仿真结果,揭示出此测量系统的测量范围,指出此测量系统存在有些电压值无法测量和电感体积大的缺点,为进一步发展此理论,提出以模拟电感为敏感元件的混沌测量系统. With chaotic system being used for measurement, the study of measurement and nonlinear applied science is break through. With the inductor as sensitive parameter, the chaotic system can measure the weak direct voltage, and it has good precision and linearity. However, has the principle any shortcoming? Based on the theory of chaotic measurement, we investigate the simulated result, in order to reveal the extent of measurement and some voltage that can't be measured. In addition, its volume is big because of using the inductor. So we develop the principle with the simulated inductor.
作者 许碧荣
出处 《杭州师范学院学报(自然科学版)》 CAS 2007年第3期189-193,共5页 Journal of Hangzhou Teachers College(Natural Science)
基金 福建教育厅资助项目(TB05184) 院青年教师科研基金资助项目(XQL05016)
关键词 混沌 测量 电感 模拟电感 chaos measurement inductor simulated inductor
  • 相关文献

参考文献12

二级参考文献34

  • 1刘文波,于盛林,等.APPLICATION OF CHAOS IN MEASUREMENT[J].Transactions of Nanjing University of Aeronautics and Astronautics,2002,19(2):113-117. 被引量:2
  • 2黄文高,童勤业.测量技术中的混沌方法[J].浙江大学学报(工学版),2001,35(5):546-549. 被引量:2
  • 3[3]Miroslav D. Lutovio, Dejan V. Tosic, Brian L. Evans. Filter Design for Signal Processing using MATLAB and Mathematica[M]. Publishing House of Electronics Industry & Prentice Hall, 2002. 被引量:1
  • 4[3]Ott E.Controlling chaos[J].Physical RevLett,1990,64(11):1196-1199. 被引量:1
  • 5[4]Freeman W J.Tutorial on Neurobiology, from Single Nourons to Brain Chaos[J]. Int J of Bifurcation and Chaos,1992,2(3):451-482. 被引量:1
  • 6Khan A A, Gupta R S. A linear thermistor-based temperature-to-frequency converter using a delay network [J]. IEEE Trans, 1985, 34(1). 被引量:1
  • 7Johnson C D, Richeh H A. Highly accurate resistance deviation to frequency converter with programmable sensitivity and resolution [J]. IEEE Trans., 1986, 35 (2). 被引量:1
  • 8E. Ott, C. Grebogi and J. A. Yorke, Controlling Chaos, Phys. Rev. Lett 64, ( 1990 ) 1196. 被引量:1
  • 9L. M. Pecora and T. L. Carroll, Synchronization in chaos system, Phys. Rev. Lett. 64(1990) 821. 被引量:1
  • 10L. O. Chua, Chua' scircuit 10 years later. Int. J. of Circuit Theroy and Application. 1994,2: 279. 被引量:1

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部