期刊文献+

ITERATED FUNCTION SYSTEM AND GALTON-WATSON TREE

ITERATED FUNCTION SYSTEM AND GALTON-WATSON TREE
下载PDF
导出
摘要 Given a system {S1,…, SN} of N contractive similarities satisfying some strong separation condition, it has an invariant Set K for the system. In this article, the authors construct some random measure μω supported on random subset Kω of K, μω having some "non-standard" multifractal structure, which contrasts the well-knoWn multifractal formalism for the invariant measure of system {S1,.., SN} may possess. The main tool is the multifractal structures of a Galton-Watson tree, which are obtained by Liu [9], Shieh-Taylor [14], and MSrters-Shieh [12]. Given a system {S1,…, SN} of N contractive similarities satisfying some strong separation condition, it has an invariant Set K for the system. In this article, the authors construct some random measure μω supported on random subset Kω of K, μω having some "non-standard" multifractal structure, which contrasts the well-knoWn multifractal formalism for the invariant measure of system {S1,.., SN} may possess. The main tool is the multifractal structures of a Galton-Watson tree, which are obtained by Liu [9], Shieh-Taylor [14], and MSrters-Shieh [12].
出处 《Acta Mathematica Scientia》 SCIE CSCD 2007年第3期456-464,共9页 数学物理学报(B辑英文版)
基金 Both authors are supported by a grant NSC 2002/3-2115-M-002-017.
关键词 Multifractal structure iterated function stysem Galton-Watson tree Multifractal structure, iterated function stysem, Galton-Watson tree
  • 相关文献

参考文献1

  • 1Jing Hu YU Wuhan Institute of Physics and Mathematics,The Chinese Academy of Sciences,Wuhan 430071,P.R.China E-mail:ding@wipm.whcnc.ac.cnDi He HU College of Mathematics and Statistics.Wuhan University,Wuhan 430072,P.R.China E-mail:dhhu@whu.edu.cn.Multifractal Decomposition of Statistically Self-Similar Sets[J].Acta Mathematica Sinica,English Series,2001,17(3):507-516. 被引量:2

二级参考文献5

  • 1Siegried Graf.Statistically self-similar fractals[J].Probability Theory and Related Fields.1987(3) 被引量:1
  • 2Falconer K. J.Random fractals, Math[].Proceedings of Cambridge Philosophical Society.1987 被引量:1
  • 3Cawly R,Mauldin R D.Multifractal decompositions of Moran fractals[].Advances in Mathematics.1992 被引量:1
  • 4Mauldin R D,Williams S C.Random recursive constructions: asymptotic geometric and topological properties[].Transactions of the American Mathematical Society.1986 被引量:1
  • 5B.Mandelbort.Negative fractal dimension and multifractals[].Physical Review A Atomic Molecular and Optical Physics.1990 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部