期刊文献+

基于仿生模式识别的手写体汉字识别方法的研究 被引量:4

Research on Handwritten Chinese Characters Recognition Based on Biomimetic Pattern Recognition
下载PDF
导出
摘要 为了提高机器识别汉字的容错性和准确性,运用仿生模式识别手写体汉字,并以机器"认知"取代机器对特征样本的"区分",研究了手写体汉字的识别方法。该方法先采用双权值椭圆形神经元对汉字的横、竖、撇、捺4类基本笔段进行覆盖;然后通过分析笔段神经元间的拓扑性质来合成具有容错表征方式的6种汉字笔划类型;接着模仿人类汉字形码输入法,通过统计具有冗余容错形状的笔划神经元类型、数量、位置和相合相交数量,建立了手写体汉字特征知识的数据结构表;最后模仿人学习、记忆及对比判断的能力,先验地建立了标准印刷汉字的样本知识库和容错匹配方法。通过对SCUT-IRAC手写体汉字库中的简单和较复杂手写体汉字识别进行的仿真实验结果表明,该方法具有接近人类识别汉字的容错性和准确性。 Applied Biomimetic Pattern Recognition to replace " differentiation" of characteristic sample by machine "cognition", a novel method of handwritten Chinese characters recognition is presented. Double weights elliptical neurons are used to cover four basic kinds of handwritten Chinese characters stroke segment. The topological property among the stroke segment neurons is analyzed. Six styles of Chinese characters stroke with fault tolerance are combined. Imitated typing methods of human Chinese characters font code, the style, number, position and number of joint and crossover of stroke neurons which have redundant fault tolerant shapes are counted. A kind of characteristic knowledge data-base table of handwritten Chinese characters and the sample data-base of standard printed Chinese characters and fault tolerant matching rules are built. Simple and more complex handwritten Chinese characters in SCUT-IRAC HCCLIB are tested. The method is proved to be close to human fault tolerance and veracity.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第7期1261-1269,共9页 Journal of Image and Graphics
关键词 仿生模式识别 神经元 特征知识 容错性 biomimetic pattern recognition, neuron, characteristic knowledge, fault tolerance
  • 相关文献

参考文献9

二级参考文献33

共引文献80

同被引文献75

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部