期刊文献+

基于图切割的人体运动检测 被引量:11

Human Motion Detection by Using Graph Cuts
原文传递
导出
摘要 研究利用图切割对人体进行有效检测的方法。首先在色相、饱和度和亮度(HSV)颜色空间建立自适应的背景混合模型快速提取背景;然后计算差分并消除阴影;最后构造8连通网络图,使用最小切割完成目标的分割。通过实验,对单模型与混合模型背景4、连通与8连通邻域以及基于数学形态学与基于图切割的分割进行了比较。结果表明,在实际环境下,采用本方法可快速、有效和鲁棒地对人体运动进行检测,并获得干净、光滑的分割结果。 A method of human motion detection by using graph cuts was proposed. Firstly, we built an adaptive background mixture models in the hue-saturation-value (HSV) color space,and got the background quickly. Secondly,we computed the difference and eliminated shadow. Finally,we represented the images as an 8-connectivity network graph, and segmented it through minimum cutting. Based on several experiments,we compared single model with mixture model background,4-connectivity neighbor with 8-connectivity one and morphological operation with graph cut. The result shows that a clean and smooth human segmentation can be gotten quickly, effectively and robustly by using the proposed method based on graph cuts in practice.
作者 侯叶 郭宝龙
出处 《光电子.激光》 EI CAS CSCD 北大核心 2007年第6期725-728,共4页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60572152)
关键词 全局能量最小化 图切割 运动检测 自适应的背景混合模型 8连通 global energy minitnixzation graph cut motion detection adaptive background mixture models 8-connectivity
  • 相关文献

参考文献11

  • 1Boykov Y,Kolmogorov V.An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J].IEEE Transactions on Pattern Analysis and Maching Intelligence,2004,26(9):1124-1137. 被引量:1
  • 2Kolmogorov V,Zabih R.What energy functions can be minimized via graph cuts?[J].IEEE Transactions on Pattern Analysis and Machine Intellegence,2004,26(2):47-159. 被引量:1
  • 3Boykov Y,Jolly M P.Interactive organ segmentation using graph cuts[A].Third International Conference on Medical Image Computing and Computer-Assisted Intervention[C].2000,276-286. 被引量:1
  • 4Boykov Y,Kolmogorov V.Computing geodesics and minimal surfaces via graph cuts[A].IEEE International Conference on Computer Vision[C].2003,26-33. 被引量:1
  • 5Xu N,Bansal R,Ahuja N.Object segmentation using graph cuts based active contours[A].IEEE Computer Society Conference on Compupter Vision and Pattern Recognition[C].2003,46-53. 被引量:1
  • 6Cook W J,Cunningham W H,Pulleyblank W R,et al.Combinatorial Optimization[M].New York:John Wiley and Sons,1998.355. 被引量:1
  • 7Greig D,Porteous B,Seheult A.Exact maximum a posteiori estimation for binary images[J].Journal of the Royal Statistical Society,Series B.1989,51(2):271-279. 被引量:1
  • 8曾明,张建勋,王湘晖,赵雅静,陈少杰.基于支持向量机的血液细胞核彩色图像分割[J].光电子.激光,2006,17(4):479-483. 被引量:21
  • 9Harville M,Gordon G,Woodfill J.Foreground segmentation using adaptive mixture models in color and depth[A].IEEE Workshop on Detection and Recognition of Events in Video[C].2001,3-11. 被引量:1
  • 10Cherkassky B V,Goldberg A V.On implementing the push-relabel method for the maximum flow problem[J].Algorithmica.1997,19(4):390-410. 被引量:1

二级参考文献3

共引文献20

同被引文献88

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部