期刊文献+

复杂最优消费组合问题的数值逼近解算法

Approximation algorithm for complex optimal consumption/portfolio problems
下载PDF
导出
摘要 针对由现有理论和方法求不到显式解的复杂最优消费组合问题,提出基于参数待定法以及遗传算法的数值逼近解算法。算法的可行性及通用性,在求解基准的复杂最优消费组合问题上得到了检验。 For those complex optimal consumption and portfolio problems whose analytical solutions are unavailable according to the existing methods,this paper proposes a framework of approximation algorithm based on the parameterization approach and genetic algorithm.Applications to two benchmark consumption/portfolio problems demonstrate the algorithm's feasibility and universality.
作者 孙有发
出处 《计算机工程与应用》 CSCD 北大核心 2007年第20期7-10,共4页 Computer Engineering and Applications
基金 广东省哲学社会科学"十一五"规划学科共建项目(No.06GO-03)
关键词 最优消费组合 数值解 多数待定法 遗传算法 optimal consumption/portfolio numerical solution parameterization approach genetic algorithm
  • 相关文献

参考文献11

  • 1Cox J C,Huang C F.Optimal consumption and portfolio policies when asset prices follow a diffusion[J].J Economic Theory,1989,49:33-83. 被引量:1
  • 2Shreve S E,Soner H M.Optimal investment and consumption with transaction costs[J].The Annual of Applied Probability,1994,4(3):609-692. 被引量:1
  • 3Domenico C.Optimal consumption and equilibrium prices with portfolio constraints and stochastic income[J].Journal of Economic Theory,1997,72(1):33-73. 被引量:1
  • 4Chen Zhi-ping,Yuen K C.Optimal consumption and investment problems under GARCH with transaction costs[J].Mathematical Methods of Operations Research,2005,61:219-237. 被引量:1
  • 5Christiano L J.Solving the stochastic growth model by linearquadratic approximation and by value-function iteration[J].Journal of Business and Economic Statistics,1990,8 (1):23-26. 被引量:1
  • 6Tauchen G.Solving the stochastic growth model by using quadrature methods and value function iterations[J].Journal of Business and Economic Statistics,1990,8 (1):49-51. 被引量:1
  • 7Den Haan WJ,Marcet A.Solving the stochastic growth model by parameterizing expectations[J].Journal of Business and Economic Statistics,1990,8 (1):31-34. 被引量:1
  • 8Sanjiv Ranjan Das,Rangarajan K.Sundaram.An approximation algorithm for optimal consumption/investment problems[J].International Journal of Intelligent Systems in Accounting,Finance & Management,2002,11:55-69. 被引量:1
  • 9孙有发,陈世权,吴今培.一种非一致性的自适应遗传算法与应用[J].系统工程,2002,20(6):82-86. 被引量:9
  • 10孙有发,张成科,高京广,邓飞其.带反馈的混沌并行GA及其在非线性约束优化中的应用[J].计算机学报,2007,30(3):424-430. 被引量:8

二级参考文献19

  • 1孙有发.智能管理及其在科研项目评审中的应用研究[M].广州:华南理工大学,1991.. 被引量:1
  • 2(美)米凯利维茨.演化程序--遗传算法和数据编码的结合[M].科学出版社,2000.. 被引量:2
  • 3Goldberg D E.Genetic algorithms in search,optimization and machine learning.Reading,Massachusetts:AddisonWesley,1989 被引量:1
  • 4Mitchell M.An Introduction to Genetic Algorithms.Cambridge:MIT Press,1996 被引量:1
  • 5Sun You-Fa,Deng Fei-Qi.Baldwin effect based self-adaptive generalized genetic algorithm and its application//Proceedings of the 8th International Conference on Control Automation,Robotics Vision.Kunming,China,2004:242-247 被引量:1
  • 6Sun You-Fa,Deng Fei-Qi.Chaotic parallel genetic algorithm with feedback mechanism and its application in complex constrained problem//Proceedings of IEEE Conference on Cybernetics and Intelligent Systems.Singapore,2004:596-601 被引量:1
  • 7Lu Qing-Zhang,Shen Guo-Li,Yu Ru-Qin.A chaotic approach to maintain the population diversity of genetic algorithm in network training.Computational Biology and Chemistry,2003,27(3):363-371 被引量:1
  • 8Hinton G E,Nowlan S J.How learning can guide evolutions.Computers Systems,1987,1:495-502 被引量:1
  • 9Belew R.Evolution,learning,and culture:Computational metaphors for adaptive algorithms.Complex Systems,1990,4(1):11-49 被引量:1
  • 10Siedheki W,Sklansky J.Constrained genetic optimization via dynamic reward-penalty balancing and its use in pattern recognition//Proceedings of the 3rd International Conference on Genetic Algorithms.San Mateo,CA:Morgan Kaufmann.1989:141-150 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部