期刊文献+

Probabilistic Tracking of Objects with Adaptive Cue Fusion Mechanism 被引量:1

Probabilistic Tracking of Objects with Adaptive Cue Fusion Mechanism
下载PDF
导出
摘要 A tracking method based on adaptive multiple cue fusion mechanism was presented,where particle filter is used to integrate color and edge cues.The fusion mechanism assigns different weights to two cues according to their importance,thus improving the robustness and reliability of the tracking algorithm.Moreover,a multi-part color model is also invoked to deal with the confliction among similar objects.The experimental results on two real image sequences show the tracking algorithm with adaptive fusion mechanism performs well in the presence of complex scenarios such as head rotation,scale change and multiple person occlusions. A tracking method based on adaptive multiple cue fusion mechanism was presented, where particle filter is used to integrate color and edge cues. The fusion mechanism assigns different weights to two cues according to their importance, thus improving the robustness and reliability of the tracking algorithm. Moreover, a multi-part color model is also invoked to deal with the confliction among similar objects. The experimental results on two real image sequences show the tracking algorithm with adaptive fusion mechanism performs well in the presence of complex scenarios such as head rotation, scale change and multiple person occlusions.
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期185-189,共5页 上海交通大学学报(英文版)
关键词 multiple cue fusion particle filter multi-part color model 彩色模型 粒子滤波器 暗示融合机制 追踪运算方法
  • 相关文献

同被引文献13

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2NUMMIARO K,MEIER E K,GOOL L V. An adap- tive color-based particle filter[J]. Image and Vision Computing, 2003, 21(1): 99-110. 被引量:1
  • 3COLLINS R T, LIU Y, LEORDEANU M. Online selection of discriminative tracking features [J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643. 被引量:1
  • 4JACQUOT A, STURM P, RUCH O. Adaptive tracking of non-rigid objects based on color histo- grams and automatic parameter selection [ C]. Breckenridge, USA: Proceedings of the IENE Workshop on Motion and Video Computing, Breck- enridge, USA, 2005. 被引量:1
  • 5TOWN C. Multi-sensory and multi-modal fusion for sentient computing[J]. International Journal of Com- puter Vision, 2007, 71(2): 235-253. 被引量:1
  • 6FAZLI S, POUR H M, BOUZARI H. Particle fil- ter based object tracking with Sift and color feature [C]//In the Proceedings of the Second International Conference on Machine Vision. NewYork : IEEE,2009. 被引量:1
  • 7LI Chun-xin, WANG Xiao-tong, XU Xiao-gang. Robust object tracking with adaptive fusion of col-or and edge strength local mean features based on particle filter[C]//International Forum on Infor- mation Technology and Applications, Chengdu, China,15-17, May,2009. NewYork:IEEE,2009. 被引量:1
  • 8FISHER R. CAVIAR test case scenarios [DB/ OL]. http://groups, inf. ed. ac. uk/vision/CAVI- AR/. 2007-01-12. 被引量:1
  • 9VIVID tracking evaluation web site [DB/OL]. ht- tp://www, vividevaluation, ri. cmu. edu/. 2008- 10-31. 被引量:1
  • 10高建坡,王煜坚,杨浩,吴镇扬.以颜色和形状直方图为线索的粒子滤波人脸跟踪[J].中国图象图形学报,2007,12(3):466-473. 被引量:11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部