期刊文献+

一类时滞Duffing型方程周期解 被引量:1

Periodic Solutions for a Kind of Duffing Equation with a Delay
下载PDF
导出
摘要 利用Mawhin重合度拓展定理,研究了一类时滞Duffing型方程x″(t)+bxn+g(x(t-)τ)=p(t)(n>1),得到周期解存在的新结果,改进和推广了已有文献的结果. By employing the continuation theorem of coincidence degree theory developed by Mawhin, we study a kind of Duffing equation with a delay as follows x″(t)+bxn+g(x(t-)τ)=p(t)(n〉1)A new result on the existence of periodic solutions is obtained. Our work improves and extends the results of literatures.
作者 尚梅 鲁世平
出处 《安徽师范大学学报(自然科学版)》 CAS 2007年第4期425-428,共4页 Journal of Anhui Normal University(Natural Science)
基金 安徽省自然科学基金(050460103)
关键词 DUFFING方程 周期解 重合度 时滞 Duffing equation periodic solution coincidence degree delay
  • 相关文献

参考文献5

二级参考文献15

  • 1黄先开.具有时滞的保守系统的2π周期解[J].系统科学与数学,1989,9(4):298-308. 被引量:17
  • 2丁同仁,中国科学.A,1982年,1期,1页 被引量:1
  • 3HUANG X K,XIANG Z G.On the existence of 2π-periodic sulutions of Duffing type equation x″(t)+g(x(t-τ)=p(t)[J].Chinese Science Bulletin,1994,39(3):201-203. 被引量:1
  • 4LAYTON W.Periodic solutions of a nonlinear delay equations[J].J Math Anal Appl,1980,77:443-460. 被引量:1
  • 5HUANG X K.On the existence of harmonic solution of Liénard systems with delay[J].Sys Sci and Math Scis,1999,19(3):328-335. 被引量:1
  • 6WANG Y L,ZHANG D X.Global centers of general system of Liénard type[J].Journal of Anhui normal university,2005,28(1):22-26. 被引量:1
  • 7MA S W,WANG Z C,YU J S.An abstract theorem at resonance and its applications[J].J Diff Eqns,1998,145:274-294. 被引量:1
  • 8LU S P,GE W G.On the existence of periodic solutions of second order differential equations with deviating arguments[J].Acta Math Sinica,2002,45(4):811-818. 被引量:1
  • 9LU S P,GE W G.Existence of periodic solutions for a kind of second-order Neutral functional differential equation[J].Appl Math Comput,2004,157:433-448. 被引量:1
  • 10SERRA E.Periodic solutions for some nonlinear differential equational equations of neutral type[J].Nonlinear Analysis,TMA,1991,17:139-151. 被引量:1

共引文献117

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部