期刊文献+

Quantum transport through two series Aharonov-Bohm interferometers with zero total magnetic flux

Quantum transport through two series Aharonov-Bohm interferometers with zero total magnetic flux
下载PDF
导出
摘要 With the help of nonequilibrium Green's function technique, the electronic transport through series Aharonov-Bohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probability characterized by the Mgebraic sum φ and the difference θ of two magnetic fluxes, and particularly a general rule of AB oscillation period depending on the ratio of integer quantum numbers of the fluxes. A parity effect is observed, showing the asymmetric AB oscillations with respect to the even and odd quantum numbers of the total flux in antiparallel AB interferometers. It is also shown that the AB flux can shift the Fano resonance peaks of the transmission spectrum. With the help of nonequilibrium Green's function technique, the electronic transport through series Aharonov-Bohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probability characterized by the Mgebraic sum φ and the difference θ of two magnetic fluxes, and particularly a general rule of AB oscillation period depending on the ratio of integer quantum numbers of the fluxes. A parity effect is observed, showing the asymmetric AB oscillations with respect to the even and odd quantum numbers of the total flux in antiparallel AB interferometers. It is also shown that the AB flux can shift the Fano resonance peaks of the transmission spectrum.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第7期2069-2074,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No 10475053).
关键词 Aharonov-Bohm interferometer difference of magnetic fluxes Fano effect Aharonov-Bohm interferometer, difference of magnetic fluxes, Fano effect
  • 相关文献

参考文献26

  • 1Schuster R, Buks E, Heiblum M, Mahalu D, Umansky V and Shtrikman H 1997 Nature (London) 385 417 被引量:1
  • 2Ji Y, Heiblum M, Sprinzak D, Mahalu D and Shtrikman H 2000 Science 290 779 被引量:1
  • 3Goldhaber-Gordon D 1998 Nature (London) 391 156 被引量:1
  • 4Gores J, Goldhaber-Gordon D, Heemeyer S, Kastner M A, Shtrikman H, Mahalu D and Meirav U 2000 Phys. Rev. B 62 2188 被引量:1
  • 5Su X M, Zhuo Z C, Wang L J and Gao J Y 2002 Chin. Phys. 11 11 被引量:1
  • 6Kouwenhoven L P, Markus C M, McEuen P L, Tarucha S Westervelt, R M and Wingreen N S 1997 In: Mesoscopic Electron Transport edited by Sohn L L, Kouwenhoven L P and Scho G, Vol. 345 of NATO Advanced Study Institute, Ser. E Kluwer, Dordrecht 被引量:1
  • 7Aharonov Y and Bohm D 1959 Phys. Rev. 115 485 被引量:1
  • 8Adair R K, Bockelman C K and Peterson R E 1949 Phys. Rev. 76 308 被引量:1
  • 9Fano U and Cooper J W 1965 Phys. Rev. 137 A1364 被引量:1
  • 10Cerdeira F, Fjeldly T A and Cardona M 1973 Phys. Rev. B 8 4734 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部