期刊文献+

一种实数编码的免疫学习算法 被引量:3

An Immune Learning Algorithm Using Real Numeric Code
下载PDF
导出
摘要 针对异常检测问题,提出了一种基于实数编码的免疫学习算法,就算法收敛的条件、是否收敛等重要问题进行了研究;给出了算法中重要参数的取值范围。实验结果表明,提出的算法能实现对抗体分布状况的动态优化和对数据模式进行聚类,获得了较高的异常检测准确率。 An immune learning algorithm using real numeric code is proposed aiming at problems about anomaly detection. The constringency condition and astringency of the algorithm is studied. A method of calculating reasonable initial population of antibodies is proposed. A Reasonable range of some main parameters is presented. The experimental result indicates that the algorithm can realize optimization to distribution situation of the antibodies and clustering of data modes. High veracity of anomaly detection is obtained.
作者 陈强 郑德玲
出处 《计算机工程》 CAS CSCD 北大核心 2007年第3期15-17,共3页 Computer Engineering
基金 高等学校博士点专项基金资助项目(20020008004)
关键词 人工免疫 进化学习 异常检测 收敛性 Artificial immune Evolution and learning Anomaly detection Astringency
  • 相关文献

参考文献6

  • 1Castro D,Fernando J.An Evolutionary Immune Network for Data Clustering[C]//Proc.of the IEEE SBRN,2000:84-89. 被引量:1
  • 2Forrest S,Javornik B,Smith R E,et al.Using Genetic Algorithms to Explore Pattern Recognition in the Immune System[J].Evolutionary Computation,1993,1(3):191-211. 被引量:1
  • 3Costa P J,Branco,Dente J A,et al.Using Immunology Principles for Fault Detection[J].IEEE Transactions on Industrial Electronics,2003,50(2):362-372. 被引量:1
  • 4Rudolph G.On a Multiobjective Evolutionary Algorithm and Its Convergence to the Pareto Set[C]//Proc.of the IEEE International Conference on Evolutionary Computation,Pisscataway (NJ),1998:511-516. 被引量:1
  • 5陈强,郑德玲.一种基于人工免疫的数据模式进化学习模型及其应用研究[J].计算机工程与应用,2005,41(20):40-43. 被引量:16
  • 6黄席樾等著..现代智能算法理论及应用[M].北京:科学出版社,2005:430.

二级参考文献5

共引文献15

同被引文献10

  • 1陈强,郑德玲.一种基于人工免疫的数据模式进化学习模型及其应用研究[J].计算机工程与应用,2005,41(20):40-43. 被引量:16
  • 2De Castro L N,Zuben F.An evolutionary immune network for data clustering[C]//Proceedings of the IEEE SBRN on Artificial Neural Networks,Brazil:IEEE Comput Soc,Los Alamitos,CA,USA,2000: 84-89. 被引量:1
  • 3De Castro L N,Zuben F.Leaming and optimization using the clonal selection principle[J].IEEE Transaction on Evolutionary Computation, 2002,6(3) : 239-251. 被引量:1
  • 4De Castro L N,Timmis J.An artificial immune network for multimodal function optimization[C]//Proceedings of IEEE Internatioal Conference on Evolutionary Computation, Honolulu, IEEE, 2002 : 699-704. 被引量:1
  • 5Matzinger P.Toleranee,danger and the extended family[J].Ann Rev Immunul,1994,12:991-1045. 被引量:1
  • 6Matzinger P.Essay 1:The danger model in its historical context[J].Scand J lmmunol,2001,54(1/2):4-9. 被引量:1
  • 7De Castro L N,Zuben F. An Evolutionary Immune Network for Data Clustering. Proceedings of the IEEE SBRN on Artificial Neural Networks.Brazil:IEEE Comput. Soc, Los Alamitos, CA, USA,2000,84-89. 被引量:1
  • 8De Castro L N,Zuben F.Learning and Optimization Using the Clonal Selection Principle. IEEE Transaction on Evolutionary Computation, 2002,6(3) : 239-251. 被引量:1
  • 9De Castro L N,Timmis J.An Artificial Immune Network for Muhimodal Function Optimization. Proceedings of IEEE Internatioal Conference on Evolutionary Computation. Honolulu : IEEE, 2002,699-704. 被引量:1
  • 10陈强,李湘萍.使用免疫克隆选择机理的故障检测器优化[J].计算机工程与应用,2008,44(36):70-72. 被引量:3

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部