摘要
利用群的一些性质研究群G的幂零性,得到了一些结论:1)设P是素数,P是群G的sylp-子群.如果Ω_1(F(G)∩P)■Z(P)且N_G(P)是P^-幂零的,则G是P^-幂零的.2)设P是素数,若P=2.P是非四元数群.P是群G的Sp-子群.若|Ω_1(F(G)∩P)|■P^(P-1)且N_G(P)是P-幂零的。则G是P-幂零的.
The properties of groups are used to research the p-nilpotence. The results are: 1) Sup-pose P is a prime and a sylow p-subgroup of G, if Ω1 (F (G)∩P)≤Z (P) and NG (P) is p-nilpotent,G is p-nilpotent; 2) Suppose P is a prime (if P=2, then G is quaternion-free) and P is a sylow p-sub-group, if| Ω1 (F (G) ∩P) |≤P^p-1 , NG (P) is p-nilpotent.
出处
《河北北方学院学报(自然科学版)》
2007年第3期1-3,共3页
Journal of Hebei North University:Natural Science Edition