期刊文献+

一类广义布鲁塞尔振子模型的周期轨(英文) 被引量:3

Periodic solutions in the generalized Brusselator
下载PDF
导出
摘要 作者考虑了一类广义的布鲁塞尔振子模型.在已有的关于此系统结论的基础上,证明了在条件bp-b-1>0,(b/ap-1)1/q=abq/(bp-b-1))下,系统唯一平衡点S:(a,(b/ap-1)1/q)是一个一阶稳定的细焦点,并且一个渐近稳定的周期轨将从该处的Hopf分岔产生.这个结果对应的已有结果.此外,也给出了关于此系统的周期轨的存在性和不存在性条件. The authors consider a kind of generalized Brusselator, a polynomial differential system of p + q degree, which was given from a general multi-molecular reaction in biochemistry as a theoretical problem of concentration kinetics. Based on the known therorems on the model, they prove that the unique equilibrium S: (α, (b/α^p-l)^1/q) is a stable weak focus with multilicity 1 under conditions bp - b - 1 〉0, (b/α^p-1)^1/q= αbq/( bp - b - 1) and a unique asymptotically stable periodic solution with small amplitude is produced from Hopf bifurcation, which correct the corresponding result obtained by Yan in 2001. Furthermore, conditions for the nonexistence and existence of periodic solutions are are also given.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期477-481,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 HOPF分岔 周期轨 不存在性 存在性 Hopf bifurcation, periodic solutions, nonexistence, existence
  • 相关文献

参考文献1

二级参考文献2

  • 1周建莹,应用数学学报,1982年,5卷,3期 被引量:1
  • 2秦元勋,科学通报,1980年,25卷,337页 被引量:1

同被引文献31

  • 1Chen C, Davidson R C. Chaotic electron dynamics for relativistic-electron-beam propagation through a planar wiggler magnetic field [J]. Phys Rev A, 1990, 42:5041. 被引量:1
  • 2Billardon M. Storage ring free-electron laser and chaos [J]. Phys Rev Lett, 1990, 65:713. 被引量:1
  • 3Schieve W C, Horwitz L P. Chaos in the classical relativistic mechanics of a damped Duffing-like driven system [J]. Phys Lett A. 1991, 156: 140. 被引量:1
  • 4Chernikov A A, Tel T, Vattay G, et al. Chaos in the relativistic generalization of the standard map [J]. Phys Rev A, 1989, 40: 4072. 被引量:1
  • 5Chen C, Davidson R C. Nonlinear resonances and chaotic behavior in a periodically focused intense charged-particle beam [J]. Phys Rev Lett, 1994, 72: 2195. 被引量:1
  • 6Chernikov A A, Schmidt G. Chaotic scattering and acceleration of particles by waves [J]. Chaos, 1993, 3 : 525. 被引量:1
  • 7Leemans W P, Joshi C, Mori W B, et al. Nonlinear dynamics of driven relativistic electron plasma waves [J]. Phys Rev A, 1992, 46: 5112. 被引量:1
  • 8Lee S W, Kim J H, Lee H W. Relativistic nonlinear dynamics of a driven constant-period oscillator [J]. Phys Rev E, 1997, 56: 4090. 被引量:1
  • 9Lee S W, Lee H W. Chaotic one-dimensional harmonic oscillator [J]. Phys Rev E, 1997, 56:5245. 被引量:1
  • 10Kim J H, Lee H W. Nonlinear resonance and chaos in the relativistic phase space for driven nonlinear systems[J]. Phys Rev E, 1995, 52: 473. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部