摘要
基于图形扫描转换的启发式底左(Heuristic Bottom-Left,HBL)算法,把一种最大速度收缩策略(Maximal Velocity Contrac-tile Strategy,MVCS)的粒子群优化(Particle Swarm Optimization,PSO)算法应用于不规则零件的优化排样,给出了新的排样组合优化算法(MVCS-PSO)的粒子构造方法和零件排样过程,通过实例把该算法与模拟退火遗传算法(Simulated Annealing Genetic Al-gorithms,SAGA)进行优化排样比较,实验结果表明,具有良好的非线性和动态搜索性能的MVCS-PSO算法是求解排样问题的一种高效算法。
The Particle Swarm Optimization(PSO) with Maximal Velocity Contractile Strategy(MVCS) is applied to the nesting of irregular parts based on the Heuristic Bottom-Left(HBL) algorithm using graphic scan conversion method.The particles of MVCS- PSO are constructed,and the nesting processes of MVCS-PSO and Simulated Annealing Genetic Algorithms (SAGA) are given. MVCS-PSO has the excellent characteristic about the non-linear dynamic search,which is proved by comparing the new combined optimization method to SAGA.Experimental results show that MVCS-PSO is a kind of efficient optimization algorithm for nesting problem.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第19期64-67,70,共5页
Computer Engineering and Applications
基金
江苏高校高新技术产业发展项目(No.JHB05-31)
关键词
最大速度收缩策略
粒子群优化
不规则零件排样
模拟退火遗传算法
启发式底左算法
Maximal Velocity Contractile Strategy (MVCS)
Particle Swarm Optimization (PSO)
nesting of irregular parts
Simulated Annealing Genetic Algorithm(SAGA)
Heuristic Bottom-Left(HBL) algorithm