期刊文献+

一类广义KdV方程(英文) 被引量:1

On the Generalized KdV Type Equation
下载PDF
导出
摘要 考虑了一类广义KdV方程,在一定条件下证明了该类方程行波解的存在性. The generalized korteweg-de Vries type equation is considered in this paper. We have proved the existence of solitary waves of this type.
作者 胡越 孙建设
出处 《吉首大学学报(自然科学版)》 CAS 2007年第3期6-9,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 The NSF of Henan Province(0511012000) SFfor Pure Research of Natural Science of the Education Departmentof Henan Province(200512950001)
关键词 KDV方程 K-Z方程 K-P方程 行波解 存在性 KdV equation K-Z equation K-P equation solitary wave mountain pass theorem
  • 相关文献

参考文献11

  • 1KORTEWEG K J,DEVRIES G.On the Change of Form of Long Waves Advancing in a Rectangular Channel and on a New Type of Long Stationary Waves[J].Philos.Mag.Ser.,1895,5:422-443. 被引量:1
  • 2ZAKHAROV V E,KUZNETSOV E M.Soviet Phys.[J].IETP,1974,39:285. 被引量:1
  • 3KADOMSTSEV B B,PETVIASHVILI V I.On the Stability of Solitary Wave in Weakly Dispersing Media[J].Sovit Phys.Doki.,1970,15:539-541. 被引量:1
  • 4LAEDKE W,SPATSCHEK K H.Nonlinear Ion-Acoustic Waves in Weak Magnetic Fields[J].J.Phys.Fluids,1982,25:985-989. 被引量:1
  • 5SHIVAMOGGI B K.Nonlinear Ion-Acoustic Waves in Weak Magnetized Plasma and Zakharov-Kuznetsov Equation[J].J.Plasma Phys.,1989,41:83-88. 被引量:1
  • 6BOURGAIN J.On the Cauchy Problem for the Kadomtesv-Petviashvili Equation Geometric and Functional Analysis,1993,3:315-341. 被引量:1
  • 7WILLEM M.On the Generalized Kadomtsev-Petviashvili Equation[J].Seminaire do Mathematique (Nouvelle Serie),1995,96:213-222. 被引量:1
  • 8SHIVAMGGI B K.The Painleve Analysis of the Zakharov-Kuznetsov Equation[J].Physica Scripa,1990,42:641-642. 被引量:1
  • 9AIZICOVICI S,SHIHLIANG WEN.Anti-Perodic Traveling Wave Solutions to a Forced Two-Dimensional Generalized KdV Equation[J].J.Math.and Anal.ADDL,1993,174:556-565. 被引量:1
  • 10BESOV O V,ILIN V P,NIKOLSKII S M.Integral Representations of Functions and Imbeddings Theorems[M].VolI,Wiley,New York,1978. 被引量:1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部