期刊文献+

一类概率约束规划逼近最优解集的上半收敛性

The upper semiconvergence of optimal solution set of approximations for a class of probabilistic constrained programs
下载PDF
导出
摘要 对一类概率约束规划逼近最优解集的上半收敛性进行了研究.利用概率测度弱收敛的特征,给出了概率约束规划可行集的收敛性条件,得到了概率约束规划逼近最优解集的上半收敛性. To study upper semiconvergence of optimal solution set of approximations for a class of probabilistic constrained programs. By using characteristic of weak convergence of probability measures, the convergence condition of feasible set for stochastic constrained progranning is presented. The upper semiconvergence of optimal solution set of approximations for probabilistic constrained programs is obtained.
机构地区 榆林学院数学系
出处 《纯粹数学与应用数学》 CSCD 北大核心 2007年第2期197-200,204,共5页 Pure and Applied Mathematics
基金 陕西省教育厅专项基金资助项目(06JK150) 榆林学院高层次人才科研启动基金资助项目
关键词 概率约束规划 最优解集 正则条件 概率测度弱收敛 上半收敛性 Probabilistic constrained programs, optimal solution set, regularity condition, weak convergence of probability measures, upper semiconvergence
  • 相关文献

参考文献7

  • 1王金德编著..随机规划[M].南京:南京大学出版社,1990:387.
  • 2Birge J R, Wets R J B. Designing approximation schemes for stochastic optimization problems,in particular for stochastic programs with recourse [J]. Mathematical Programming Study, 1986,27 ( 1 ) : 54-102. 被引量:1
  • 3Dupacova J, Wets R J B. Asymptotic behavior of statistical estimators and of optimal solutions of optimization problems[J]. The Annals of Statistics, 1988,16(2):1517-1549. 被引量:1
  • 4Pennanen T, Koivu M. Epi-convergent discretizatins of stochastic programs via integration quadratures[J]. Numerische Mathematik, 2005, 100(1):141-163. 被引量:1
  • 5霍永亮,刘三阳.随机规划逼近最优解集的上半收敛性[J].西安电子科技大学学报,2005,32(6):953-957. 被引量:17
  • 6Wang J D. Continuity of the feasible solution sets of probabilistic constrained programs[J]. JOTA, 1989,63(1):79-89. 被引量:1
  • 7Lucchetti R, Salinetti G, Wets R J B. Uniform convergence of probability mea-sures: Topological criteria[J]. Journal of Multivariate Analysis, 1994,51(1):252-264. 被引量:1

二级参考文献3

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部