期刊文献+

集成毛细管电泳芯片分离尿蛋白条件的初步优化

Initial optimization of integrated capillary electrophoresis chip separation of urine proteins
下载PDF
导出
摘要 目的:探讨集成毛细管电泳芯片快速分离尿蛋白条件的初步优化。方法:考察了分离电压(1200~2000V)、进样时间(10~30s)及乙胺浓度(0.5~2%(v/v))对尿蛋白分离的影响。结果:以75mmol/L pH10.3硼酸盐缓冲液含9.73μmol/L乳酸钙、1%(v/v)乙胺为电泳缓冲液,在以500V的进样电压进样15s、分离电压1500V条件下,电泳分离尿蛋白能分出更多蛋白峰。结论:通过优化可以有效地提高电泳芯片分离尿蛋白的效果。 Objective:To investigate the initial optimization of integrated capillary electrophoresis chip for rapid separation of urine proteins. Methods:Separating voltage (1 200-2 000V), injection time (10-30s) and ethylamine concentration (0.5-2% (v/v))were integratively evaluated to select the optimal condition of separating urine proteins. Results:The electrophoresis was finished in 4 minutes. Results were obained through comprehensive analysis: more resolved protein peaks could be achieved by using 15s injection time with 500V, 1500V separation voltage and 75mmol/L pill0.3 borate buffer containing 9.73 μmol/L calcium lactate and 1%(v/v) ethylamine as electrophoresis buffer. Conclusion:Elevated efficiency of separating urine proteins using integrated capillary electrophoresis chip can be gained by optimization of electrophoresis conditions.
出处 《交通医学》 2007年第3期227-229,共3页 Medical Journal of Communications
基金 国家"863"重大专项(2002AA404310 2004AA404252) 江苏省卫生厅重大项目(H200216)。
关键词 集成毛细管电泳芯片 电泳 尿蛋白 乙胺 integrated capillary electrophoresis chip electrophoresis urine proteins ethylamine
  • 相关文献

参考文献5

二级参考文献51

  • 1[27]Men Z J, Qi S Z, Soper S A, et al. Interfacing a Polymer-based Micromachined Device to a Nanoelectrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Anal. Chem., 2001, 73: 1286~1291 被引量:1
  • 2[28]Yuan C H, Shiea J. Sequential Electrospray Analysis Using Sharp-tip Channels Fabricated on a Plastic Chip. Anal. Chem., 2001, 73: 1080~1083 被引量:1
  • 3[29]Johnson T J, Ross D, Gaitan M, et al. Laser Modification of Preformed Polymer Microchannels: Application to Reduce Band Broadening Around Turns Subject to Electrokinetic Flow. Anal. Chem., 2001, 73: 3656~3661 被引量:1
  • 4[31]Weinert A, Amirfeiz P, Bengtsson S, et al. Plasma Asisted Room Temperature Bonding for MST. Sensors and Actuators A, 2001, 92: 214~222 被引量:1
  • 5[32]McCreedy T. Fabrication Techniques and Materials Commonly Used for the Production of Microreactors and Micro Total Analytical Systems. Trends in Analytical Chemistry, 2000, 19(6): 396~401 被引量:1
  • 6[33]Nakanishi H, Nishimoto T, Nakamura R, et al. Studies on SiO2-SiO2 Bonding with Hydrofluoric Acid. Room Temperature and Low Stress Bonding Technique for MEMS. Sensors and Actuators A, 2000, 79: 237~244 被引量:1
  • 7[35]Weiller B H, Ceriotti L, Shibata T, et al. Analysis of Lipoproteins by Capillary Zone Electrophoresis in Microfluidic Devices: Assay Development and Surface Roughness Measurements. Anal. Chem., 2002, 74: 1702~1711 被引量:1
  • 8[36]Takoshi I, Kaiuharu S, Seishiro O, Water Glass Bonding for Micro-total Analysis System. Sensors and Actuators B, 2002, 81:187~195 被引量:1
  • 9[37]Chiem N, Harrison D J. Microchip-based Capillary Electrophoresis for Immunoassays: Analysis of Monoclonal Antibodies and Theophylline. Anal. Chem., 1997, 69: 373~378 被引量:1
  • 10[38]Chiem N, Shultz L L, Andersson P, et al. Room Temperature Bonding of Micromachined Glass Devices for Capillary Electrophoresis. Sensors and Actuators B, 2000, 63: 147~152 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部