摘要
以硝基苯为主要目标污染物,探讨固定化生物活性炭(IBAC)工艺对含硝基苯微污染水的净化效能以及利用该工艺处理含硝基苯微污染水的可行性.采用筛选、驯化的工程菌,对活性炭(GAC)进行固定化,使之成为固定化生物活性炭处理含硝基苯微污染水.试验对比了IBAC和GAC去除硝基苯、高锰酸盐指数、浊度、UV254、氨氮、亚硝酸盐氮的性能,测定了炭柱进出水中生物综合毒性,考察了炭柱在接种后以及运行相对稳定时炭上细菌总数的变化.结果表明,IBAC启动速度快,对微污染物净化效能较高;IBAC对硝基苯的去除效果更好,在遭遇冲击负荷时,恢复净化能力的时间较短;炭柱进水中硝基苯控制26μg/L以下时可保证出水检不出硝基苯;加入硝基苯会明显增加水的毒性,IBAC出水毒性低于GAC出水;IBAC上细菌总量较高,沿水流方向,炭柱上的菌量都是先增加后减少.
The performance and feasibility of immobilization biological activated carbon (IBAC) were investigated to treat micro-pollutant water containing nitrobenzene. IBAC has been developed on the granular activated carbon by immobilization of selected and acclimated species of engineering bacteria to treat the micro-pollutant water containing nitrobenzene. The IBAC removal efficiencies for nitrobenzene, permanganate index, turbidity, UV, ammonia and nitrite were compared with granular activated carbon (GAC) process. Biological toxicity of influent and effluent of filter were determined. Amount of bacteria in carbon was measured when carbon filter was inoculated and circulated stably. The results showed that compared with GAC, it took short time for IABC to startup and recover to normal after impact burden. In addition, IBAC was more effective to treat micro-pollutants. In order to ensure security of drinking water, the influent nitrobenzene should be controlled below 26 μg/L. Effluent biological toxicity treated with IBAC was less than that with GAC. The performance of IBAC was much better than that of GAC. Amount of bacteria in both activated carbon filter increased first and then declined from inlet to outlet.
出处
《环境科学》
EI
CAS
CSCD
北大核心
2007年第7期1490-1495,共6页
Environmental Science
基金
国家重点基础研究发展规划(973)项目(2004CB185050)
黑龙江省重大科技攻关项目(CC05S301)
关键词
硝基苯
固定化生物活性炭
微污染水
nitrobenzene
immobilized biological activated carbon
micro-pollutant water