期刊文献+

基于统计参数分析和RBF网络的动调陀螺故障诊断方法 被引量:3

A Fault Diagnosis Method for DTGs Based on Statistical Parameter Analysis and RBF Neural Network
下载PDF
导出
摘要 针对动调陀螺故障振动信号的特点,提出了一种基于振动统计参数分析和神经网络的动调陀螺故障诊断方法。该方法通过计算原始振动信号的一组统计参数作为表征故障的特征信息,以此作为RBF神经网络的输入参数来学习并识别陀螺故障。实验结果表明,采用对统计参数的计算能够简单、有效地提取陀螺故障特征信息;运用神经网络进行故障诊断建模,使诊断具有自适应、自学习的能力,诊断结果更加可靠。 Fault diagnosis of gyroscopes plays a critical role in inertial navigation system for higher reliability and precision. In this paper, the statistical parameter analysis, a kind of time domain analysis approach for vibration signal, is introduced and a fault diagnosis method based on the statistical parameter analysis and RBF neural network is proposed for dynamically tuned gyroscopes (DTG). This method first employs the statistical parameter analysis to compute a set of statistical parameters of vibration signal, with which the RBF neural network is then constructed to train and identify the working state of the DTG. The experimental results verify that the proposed diagnostic model can simply and effectively extract the state feature of DTG and is reliable and practical.
出处 《航天控制》 CSCD 北大核心 2007年第3期88-90,96,共4页 Aerospace Control
关键词 统计参数分析 RBF神经网络 故障诊断 动调陀螺仪 Statistical parameter analysis RBF neural network Fault diagnosis Dynamically tuned gyroscope
  • 相关文献

参考文献7

二级参考文献19

  • 1赵松年 熊小芸.子波分析与子波变换[M].北京:电子工业出版社,1996.28-30. 被引量:5
  • 2Mallat S, Hwang W L. Singularity detection and processing with wavelet [J]. IEEE Trans. Information Theory, 1992, 38(2): 617-643. 被引量:1
  • 3Battiti R. First and second-order methods for learning: between steepest descent and Newton's method [J]. Neural computation, 1992, 4(2): 141-166. 被引量:1
  • 4Ling Jing,Qu Liansheng.Featrue extraction based on Morlet wavelet and its application for mechanical fault diagnosis.Journal of Sound and Vibration,2000,234(1):135-148 被引量:1
  • 5Peter W.Tse,Peng Y H,Richard Yam.Wavelet analysis and envelope detection for rollering element bearing fault diagnosis-their effectives and flexibilities.Journal of Vibration and Acoustics,2000,123:303-310 被引量:1
  • 6Wang W J,MchFadden P D.Application of orthogonal wavelets to early gear damage detection.Mechanical System and Signal Processing,1995,9(5):497-507 被引量:1
  • 7Jing Lin.Feature extraction of machine sound using wavelet and its application in fault diagnosis.NDT&E international,2001(34):25-30 被引量:1
  • 8Fenton B,Mcginnity M,Maguire L.Fault diagnosis of electronic systems using artificial intelligence[J].IEEE Instrumentation &Measurement Magazine,2002,5(2):16-19. 被引量:1
  • 9Mahanty R N,Gupta P B D.Application of RBF neural network to fault classification and location in transmission lines[C] //IEE Proceedings on Generation,Transmission and Distribution,2004:201-212. 被引量:1
  • 10Gori M,Tesi A.On the problem of local minima in back propagation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(1):76-86. 被引量:1

共引文献38

同被引文献12

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部