期刊文献+

基因组序列CGR图形表示的多重分形分析 被引量:3

Multifractal Analysis of Genomes Sequences' CGR Graph
下载PDF
导出
摘要 为了更好地描述基因组序列CGR(chaos-game representation)图形的分形特征,引入多重分形理论进行分析。通过研究3种概率集对标度不变性范围的影响,选取出标度不变性最好的概率集,计算光滑的广义维数谱和多重分形谱。结果表明:以相对概率组成概率集时标度不变性最好,而且标度不变性随尺度变化可被分为3个不同的区域,这反映了基因组序列不同长度的序列片段有不同的分布规律。可见,多重分形方法可以用于描述基因组序列CGR图形的分形特征。 To describe the fractal feature of CGR (Chaos-game representation) graph of genomes sequences, a multifractal theory is presented in the analysis. By studying the effect of three probability sets on the scale invariance range, the probability set with the best scale invariance is chosen, and then the smooth general dimension spectrum and multifractal spectrum are calculated. The experimental result shows that the probability set composed of the relative probability has the best scale-invariance performance. The scale invariance has three different variance regions, which indicate that genomes sequence segments with different lengths have different distribution rules. It is concluded that the multifractal method is effective for describing the fractal feature of CGR graph of genomes sequences.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2007年第3期522-525,共4页 Journal of Biomedical Engineering
关键词 多重分形 CGR图形 概率集 标度不变 广义维数谱 多重分形谱 Multifractal CGR graph Probability set Scale invariance General dimension spectrum Multifractal spectrum
  • 相关文献

参考文献7

  • 1Jeffrey H.Chaos game representation of gene structure.Nucl Acids Res.,1990;18:2163 被引量:1
  • 2Yu Z,Hao B,Xie H,et al.Dimensions of fractals related to languages defined by tagged strings in complete genomes.Chaos,Solitons Fractals Ⅱ,2000;11:2215 被引量:1
  • 3TinoP.Spatial representation of symbolic sequences through iterative function systems.IEEE Trans.Systems Man Cybern,1999;29:386 被引量:1
  • 4Gutiérrez J,Rodríguez M,Abramson G.Multifractal analysis of DNA sequences using a chaos-game representation.Physica A,2001;300:271 被引量:1
  • 5Almeida J,Carrico J,Maretzek A,et al.Analysis of genomic sequences by chaos game representation.Bioinformatics,2001;17:429 被引量:1
  • 6孙霞,吴自勤,黄畇编著..分形原理及其应用[M].合肥:中国科学技术大学出版社,2003:266.
  • 7周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性I.经典Renyi定义法[J].华东理工大学学报(自然科学版),2000,26(4):385-389. 被引量:27

二级参考文献4

共引文献26

同被引文献37

  • 1邹望远,郭曲练.Rh血型与输血的研究进展[J].国外医学(输血及血液学分册),2004,27(5):443-445. 被引量:16
  • 2王和平,康景利.一种基于小波模极大值的信号去噪算法[J].系统工程与电子技术,2005,27(11):1876-1877. 被引量:11
  • 3宁新宝,卞春华,王俊,陈颖.心脏电活动过程的非线性分析[J].科学通报,2006,51(7):764-771. 被引量:20
  • 4王克夷.天然无折叠蛋白质[J].生命的化学,2006,26(3):199-202. 被引量:3
  • 5AVENT N D, REID M E. The Rh blood group system: a review[J]. Blood, 2000, 95(2): 375-387. 被引量:1
  • 6SINGLETION B K, GREEN C A, AVENT N D, et al. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in Africans with the Rh D-negative blood group phenotype[J]. Blood, 2000, 95 ( 1 ) : 12-18. 被引量:1
  • 7JEFFERY H J. Chaos game representation of gene structure [J]. Nucleic Acids Research, 1990, 18(8): 2163-2170. 被引量:1
  • 8YU Z G, ANH V, LAU K S. Chaos game representation of protein sequences based on the detailed HP model and their muhifractal and correlation analyses[J]. Journal of Theoretical Biology, 2004, 226: 341-348. 被引量:1
  • 9ALMEIDA J S, CARRICO J A, NOBLE P A, et al. Analysis of genomie sequences by Chaos Game Representation [J]. Bioinformaties, 2001, 17(5): 429-437. 被引量:1
  • 10GUTERREZ M, RODRIGUZE M A, ABRAMSON G. Multifractal analysis of DNA sequences using a novel chaosgame representation[J]. Physica A, 2001, 300: 271-284. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部