期刊文献+

基于Apriori算法的免疫识别规则的挖掘(英文) 被引量:1

Mining Method of Computer Immunological Recognition Rules Based on Apriori Algorithm
下载PDF
导出
摘要 GECISM(GEneral computer immune system model)是基于规则匹配检测的计算机免疫系统,免疫识别规则对“自我”和“非我”特征的表征能力直接影响到GECISM的性能,所以挖掘高效免疫识别规则的是GECISM的一个重要研究内容。改进后的Apriori算法以系统调用序列为数据源,从“自我”集和“非我”集中计算出频繁谓词,进而产生免疫识别规则。这些规则反映了“自我”和“非我”的内在特征,是GECISM进行“非我”检测的判据。 GECISM is a rule for matching detection based computer immune system whose performance directly relates to how much these recognition rules can represent the features of self and nonself,so extracting effective recognition rules is the key theme to implement GECISM system. Revised Apriori algorithm calculates frequent predicates from system call sequence which is the raw data, and then extracts recognition rules. These rules reflect some inherent feature of self and nonself,and they are the basic detection criterion of GECISM.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2007年第2期38-42,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 Plan of Research on Science and Technology and Development in Hebei Province(04213534,04213529)
关键词 计算机免疫 识别规则 数据挖掘 APRIORI算法 computer immune recognition rules data mining Apriori algorithms
  • 相关文献

参考文献4

二级参考文献11

共引文献30

同被引文献9

  • 1AGRAWAL R, LMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[C]// Proceedings of the ACM-SIGMOD 1993 Internetional Conference on Management of Data. New York: ACM Press, 1993: 207-216. 被引量:1
  • 2LI Ying jiu, PENG Ning, WANG X S, et ah Discovering calendar-based temporal association rules[C]//Proceedings of the 8th International Symposium on Temporal Representation and Reasoning. New York: IEEE Press, 2001:111-118. 被引量:1
  • 3OZDEN B, RAMASWAMY S, SILBERSCHATZ A. Cyclic association rules[C]//Proceedings of the 14th International Conference on Data Engineering. Orlando : IEEE, 1998 : 412-421. 被引量:1
  • 4KAM P S, FU A W C, Discovering temporal patterns for interval-based events[C].//Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovery. London: Springer-Verlag, 2000:317-326. 被引量:1
  • 5AGRAWAL R, SRIKANT R. Mining sequential patterns [C]//11th International Conf on Data Engineering. New York :IEEE Press, 1995: 3-14. 被引量:1
  • 6WINARKO E, RODDICK J F. Discovering richer temporal association rules from interval-based data[C]//Data Warehousing and Knowledge Discovery. Berlin :Heidelberg:Springer, 2005,3589:315-325. 被引量:1
  • 7ZHU Tian, BAI Si-xue. A parallel mining algorithm for closed sequential patterns[C]//Prceedings of 21st International Conference on Advanced Information Networking and Applications Workshops. New York:IEEE Press,2007:392-395. 被引量:1
  • 8WANG J Y, HAN J. BIDE .. efficient mining of frequent closed sequences[C]//Proc 2004 International Conference on Data Engineering. Boston : IEEE Press, 2004 : 79-91. 被引量:1
  • 9KOHAVI R, BRODLEY C, FRASCA B, et al. KDD-cup 2000 organizers' report: Peeling the Onion[C]//ACM SIGKDD Explorations Newsletter. New York: ACM Press, 2000, 2(2):86-93. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部