期刊文献+

恒化器中具有不同移动速率的环状模型解的定性分析 被引量:3

Qualitative analysis of solution in chemostat with different removing rate
原文传递
导出
摘要 为模拟自然界中既包含竞争关系又包含捕食-被捕食关系的生态系统,建立用常微分方程组表示的环状模型.模型中的微生物种群具有不同的死亡率,由此导致系统能量不守恒,降维法失效.通过直接求解三个方程组成的方程组,得到半平凡平衡点的存在性.运用常微分方程的定性理论讨论平衡点的局部渐进稳定性并证明系统的一致持续生存性质.用Matlab软件对相应平衡点的存在性和稳定性进行数值模拟.结果表明:适当调整系统参数,系统会出现振荡,从而产生分歧现象. An annular model for chemostat was depicted by a group of ODE (ordinary differential equation) to imitate the ecosystem which included competition and predator-prey relations in nature. The different death rates of the microorganism led to the failure of conservation law and the method of dimensionality reduction. The existence of semi-trivial equilibria was obtained by directly solving the group which consisted of three ODE. The local asymptotic stability of the equilibria together with the uniform persistence of the system were discussed with help of qualitative theory of ODE. Numerical simulation of corresponding equilibria' s existence and stability were presented. The results show that the system will oscillate so as to cause bifurcations if the parameters of the system are regulated properly.
作者 刘婧 刘卫强
出处 《大连海事大学学报》 EI CAS CSCD 北大核心 2007年第2期116-119,共4页 Journal of Dalian Maritime University
基金 辽宁省高等学校科学研究资助项目(2005078)
关键词 恒化器 移动速率 环状模型 捕食-被捕食 chemostat removing rate annular model predator-prey
  • 相关文献

参考文献8

  • 1SMITH H L,WALTMAN P.The theory of the chemostat[M].Cambridge:Cambridge University Press,1995. 被引量:1
  • 2LEENHEER P D,LEVIN S A,CHRISTOPHER E D S,et al.Global stability in a chemostat with multiple nutrients[J].Math Biol,2006,52:419-438. 被引量:1
  • 3LI B T,KUANG Y.Simple food chain in a chemostat with distinct removal rates[J].Math Anal Appl,2000,242:75-92. 被引量:1
  • 4EL-SHEIKH M M A,MAROUF S A A.Stability and bifurcation of a simple food chain in a chemostat with different removal rates[J].Chaos Solitons Fractals,2005,23:1475-1489. 被引量:1
  • 5LI B T.Global asymptotic behavior of the chemostat:general response functions and removal rates[J].SIAM J Appl Math,1998,59:411-422. 被引量:1
  • 6刘婧,郑斯宁.Chemostat中环状微生物连续培养模型的定性分析[J].甘肃工业大学学报,2002,28(4):112-114. 被引量:2
  • 7BIRKHOFF G,ROTA G C.Ordinary differential equations[M].New York:Wiley,1969:129-130. 被引量:1
  • 8WANG W D,CHEN L S.A predator-prey system with stage-structure for predator[J].Computers Math Appl,1997,33(8):83-91. 被引量:1

二级参考文献1

共引文献1

同被引文献49

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部