期刊文献+

基于平均曲率流活动轮廓模型的超声医学图像边缘提取 被引量:2

Edge Detection of Ultrasound Medical Image Using Mean Curvature Vector Flow Deformable Models
下载PDF
导出
摘要 目的改进外部力场以提高梯度矢量流(gradient vector flow,GVF)活动轮廓模型在超声斑点噪声环境下的边缘提取的稳定性和准确性。方法用角点判断函数和梯度控制函数调节平均曲率流(mean curvature vector flow,MCVF)扩散和各向异性扩散程度,生成新的外部力场,引导活动轮廓模型实现边缘提取。结果通过二值加噪图像和心脏超声图像的实验,验证了该方法的捕捉范围和处理噪声方面优于GVF。结论本文提出的边缘提取结果在超声医学图像方面鲁棒性强、初始化范围大、弱化噪声,同时能够保留边界以及尖角点,是适用于超声医学图像边缘提取的方法。 Objective To promote stability and accuracy of gradient vector flow (GVF) deformable models by improving external potential force field of ultrasound images under speckle noisy environments, Methods A new external force field was generated by using corner and gradient weigh function to control the mean curvature vector flow (MCVF) and anisotropic diffusion, then the deformable model was guided to achieve edge detection. Results According to the test on noise binary images and ultrasound images, it was proved that in this case the capture range was larger than that of GVF, and it was more insensitive to noise. Conclusion The results showed that the new method has the advantages of robustness, and large capture range. It reduces noise and at the same time preserves edges and sharp corner points in ultrasound images. It proves to be an effective method for edge detection of ultrasound images.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2007年第3期205-208,共4页 Space Medicine & Medical Engineering
基金 四川省青年科学基金资助(04ZQ026-013)
关键词 超声图像 边缘提取 活动轮廓模型 各向异性扩散 平均曲率流 ultrasound images edge detection deformable model anisotropic diffusion mean curvature vector flow
  • 相关文献

参考文献2

二级参考文献40

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2Iijima T. Basic theory of pattern normalization (for the case of a typical one dimensional pattern) [J].Bulletin of the Electrotechnical Laboratory, 1962;26:368-388. 被引量:1
  • 3Witkin A P. Scale Space Filtering[A]. In Int. Joint Conf. Artificial Intelligence[C], 1983;1019-1021. 被引量:1
  • 4Koenderink J J. The Structure of Image[J]. Biological Cybernetics, 1984;50:363-370. 被引量:1
  • 5Tony Lindeberg, Bart M. Ter Harr Romeny. Linear scale space[M]. Netherlands: Kluwer Academic Publishers, 1994. 被引量:1
  • 6Luis Alvarez et al.. Axioms and Fundamental Equations of Image Processing[J]. Arch. Rational Mech. Anal,1993; 123:199-257. 被引量:1
  • 7Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE transaction 13 on Pattern Analysis and Machine Intelligence, 1990;12(7):629-639. 被引量:1
  • 8Guichard F, Morel J-M. Image iterative smoothing and P.D.E's[R]. Lecture Notes, Beijing, 1999. 被引量:1
  • 9Guillermo Sapiro. Geometric Partial Differential Equations and Image Analysis[M]. Cambridge: Cambridge University Press, 2001. 被引量:1
  • 10David Mumford, Jayant Shah. Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems[J]. Communications on Pure and Applied Mathematics, 1989;42(5):577-685. 被引量:1

共引文献15

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部