期刊文献+

基于用户行为分析的自适应新闻推荐模型 被引量:9

Adaptive News Recommended Model Based on Users' Behaviors Analysis
原文传递
导出
摘要 针对新闻浏览者的偏好易变等特点,通过度量在线用户的点击和阅读行为,依据其不同的阅读策略类型,分析其页面偏好,并综合各页面偏好和新闻偏好,以关键字偏好表的形式表示;然后设计自适应的评分推荐机制,动态地分析用户兴趣及其转移;设计学习机制,根据用户实际阅读的新闻,调整其关键字偏好,并采用模糊相似度来分析用户偏好结构与新闻结构的相似性,从而产生推荐。实验表明,所构造的模型能够提供良好的个性化新闻推荐服务。 According to the characteristics of Web news browser, such as inconstancies of preference, user's online behaviors are measured. Firstly, user's page preference and news preference are analyzed at the basis of user's reading strategies to form a table of keywords-preferences. Then, the adaptive recommended mechanism is designed to deal with the changes of user's preference. Learning mechanism is also designed to adjust the keywords-preferences of user, based on news actually read by users. At last, fuzzy method is applied to analyze similarity between user's preference and news structure to produce recommendations. The proposed model has been approved to have higher capability than traditional method.
作者 高琳琦
出处 《图书情报工作》 CSSCI 北大核心 2007年第6期77-80,71,共5页 Library and Information Service
基金 国家自然科学基金项目"面向电子商务的顾客偏好分析与个性化推荐系统"(项目编号:70402009)研究成果之一
关键词 用户行为 需求偏好 个性化推荐 学习策略 user's behavior requirement preference personalized recommendation learning strategy
  • 相关文献

参考文献11

  • 1中国互联网信息中心.第十八次中国互联网络发展状况统计报告.[2006-07-09].http://www.cnnic.net.cn. 被引量:1
  • 2Mock K J,Vemuri Rao V.Information filtering via hill climbing,wordnet,and index patterns.Information Processing & Management,1997,33(5):633-644. 被引量:1
  • 3Sakagami H,Kamba T.Learning personal preferences on online newspaper articles from user behaviors.Computer Networks and ISDN Systems,1997,29(8):1447-1455. 被引量:1
  • 4Cheung Kwok-Wai.Learning user similarity and rating style for collaborative recommendation.Information Retrieval,2004,7(6):395-410. 被引量:1
  • 5Huber G P.Organizational learning:The contributing process and the literatures.Organization Science,1997,2(1):88-115. 被引量:1
  • 6吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 7高琳琦,李龙洙.基于顾客行为的产品推荐方法[J].计算机工程与应用,2005,41(3):188-190. 被引量:12
  • 8Smith K A,Ng A.Web page clustering using a selef-organizing map of user navigation patterns.Decision Support Systems,2003,35(2):245-256. 被引量:1
  • 9Miller G A.WordNet:A lexical database for English.Communication of the ACM,1995,38(11):39-41. 被引量:1
  • 10Kilgour F G.Effectiveness of surname-title-word searches by scholars.JASIS,46(2):146-151. 被引量:1

二级参考文献47

  • 1Minghua He,Ho-fung Leung.Agents in E-Commerce:State of the Art[J].Knowledge and Information Systems, 2002;(4):257~282. 被引量:1
  • 2Ralph Bergmann,Padraig Cunningham. Acquiring Customer's Requirement in Electronic Commerce[J].Artificial Intelligence Review,2002;(18):163~169. 被引量:1
  • 3Kwok-Wai Cheung et al. Mining customer product ratings for personalized marketing[J].Decision Support Systems,2003;(35):231~243?A. 被引量:1
  • 4Juhnyoung Lee et al. Visualization and Analysis of Clickstream Data of Online Stores for Understanding Web Merchandising[J].Data Mining and Knowledge Discovery,2001;(5):59~84. 被引量:1
  • 5Kim,BD,Kim,SO.A new recommender system to combine content-based and collaborative filtering systems.Journal of Database Marketing,2001,6(3):244 ~ 252 被引量:1
  • 6Mukherjee,R,Sajja,N.Sen.S.A Movie recommendation system-an application of voting theory in user modeling.User Modeling and User-Adapted Interaction,2003,13:5 ~ 33 被引量:1
  • 7Zaiane,OR.Building a recommender agent for e-learing systems.2002 International Conference on Computers in Education.2002,55 ~ 59 被引量:1
  • 8Moukas,A.Amalthaea:Information Filtering and Discovery Using a Multiagent Evolving System.Journal of Applied AI,1997,11(5):437 ~ 457 被引量:1
  • 9Asnicar,F,Tasso,C.IfWeb:A Prototype of User Models Based Intelligent Agent for Document Filtering and Navigation in the World Wide Web.In:Proceedings of UM' 97.Sardinia:Chia Laguna,1997 被引量:1
  • 10Park,YW,Lee,ES.A New Generation Method of a User Profile for Information Filtering on the Internet.In Proceedings of the 13th International Conference on Information Networking.Washington,DC:IEEE Computer Society,1998,261 ~ 264 被引量:1

共引文献114

同被引文献118

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部