摘要
在普通群体中建立了两对等位基因遗传的数学模型,讨论了基因型频率在世代间的动态变化、遗传趋势、群体平衡及其性质,以及随机交配率、基因频率与基因型频率的关系。结果表明,在普通群体两对等位基因的遗传中,非平衡群体的数学模型(4)可以转换为随机交配群体的数学模型和非平衡自交群体的数学模型;平衡群体的数学模型(7)可以转换为随机交配群体的数学模型和平衡自交群体的数学模型。在群体平衡时,当两对等位基因频率均相等时,杂合子频率达到极大值。杂合子频率随r增大而增加,当r=1时达到最大值;当r=0时达到最小值。
This article established the genetic mathematical model for two pairs of independent genes in a general population. The dynamic change, the trend of heredity, the population equilibrium and relevant characteristics of genotypic frequency among different generations were discussed. The relation among the rate of random mating, gene frequency and genotypic frequency was also discussed. The results show that in a general population's genetic for two pairs of alleles, the mathematics model of the disequilibrium population i. e. (4) can be transformed into the mathematics models of the random mating population and disequilibrium mating population;the mathematics model of the equilibrium population i. e. (7) can be transformed into the mathematics models of the random mating population and the equilibrium mating population. The frequency of the heterozygote is maximum when the frequencies of two pairs of alleles are equal. With the increase of r, the frequency of the heterozygote increases. When r= 1, the frequency of the heterozygote reaches maximum;When r = 0 ,the frequency of the heterozygote reaches minimum.
出处
《西北农林科技大学学报(自然科学版)》
CSCD
北大核心
2007年第6期69-72,共4页
Journal of Northwest A&F University(Natural Science Edition)
关键词
普通群体
遗传机制
等位基因
基因型频率
general population
genetic mechanism
allele
genotypic frequency