摘要
利用值分布理论的技巧,研究了一类代数体函数的唯一性定理.将以往的唯一性定理中的常量推广到慢增长的亚纯函数.实例完善了本文的结论.
In this paper we prove:Theorem I Let u = u(z) and ω=ω(z) be strong general type nl -valued and n2 -valued algebroid functions respectively. Let n= ma-c{n1,n2 }. Suppose that are 3n + 2 distinct meromrphic functions lohich grow more slowly than u(z) and ω(z) so that u(z) - bk(z) = 0 and ω(z) - bk(z) = 0 (k = 1, 2, .., 3n + 2) have the same roots (counting multiplicity). Then u(z) ω(z). An example is given to complement the result.
出处
《应用数学》
CSCD
1997年第1期13-16,共4页
Mathematica Applicata
关键词
代数体函数
值分布
唯一性定理
亚纯函数
Algebroid functions
Value distribution theory
Unicity theorem
Small meromorphic functions