摘要
探讨了K次Fibonacci数列{Fnk}中连续的k+2个数之间的线性递推关系,并证明了对任意正整数k,Fnk+k+1必可以由其前面连续的k+1个数,Fkn,Fnk+1,……,Fnk+k线性表示,并给出了具体的求法。
This paper analyses the linear recursion relationship among the k + 2 numbers in the ktimes sequence of Fibonacci number,and proves that Fn+k+1^k can be represented by the previous con such tinuous k + 1 numbers for any positive interger k, such as Fn^k,Fn+1^k,……,Fn+k^k. It also gives some concrete solutions.
出处
《福建工程学院学报》
CAS
2007年第3期297-300,共4页
Journal of Fujian University of Technology
基金
福建商业高等专科学校基金资助项目(D200710)
关键词
FIBONACCI数列
矩阵
秩
初等变换
sequence of Fibonacci number
matrix
rank
elementary transformation