期刊文献+

基于免疫遗传算法的车间调度问题的研究 被引量:12

Study of Job Shop Scheduling Using Immune Genetic Algorithm
下载PDF
导出
摘要 根据生命科学中免疫系统的信息处理机制,在一般遗传算法的基础上,将免疫计算和改进的遗传算法(预防近亲结合的多重交叉策略)相结合,建立了一种用于车间调度的免疫遗传算法,通过接种疫苗提高抗体的适应度,通过免疫选择防止种群的退化。针对作业车间调度问题,设计了免疫遗传计算中疫苗的提取和接种方法,即基于加工机器的基因片断抽取疫苗方法和接种方法。通过作业车间调度十个典型标准问题验证,文中所述免疫遗传算法可行,较现有免疫算法、一般遗传算法及一些传统优化设计方法在收敛效率和准确性等方面有很大改进与提高。 According to the information processing mechanism of an immune system in biotic science, on the basis of simple genetic algorithm, we propose a new immune genetic algorithm for job shop scheduling through combining immune algorithm with improved genetic algorithm (multi-crossover strategy for preventing incest). We raise the fitness of an antibody by vaccination and prevent species degeneration by immune selection. To deal with a job shop scheduling problem, we design the method for extracting and injecting vaccines during immune genetic calculation, which is based on the gene segments processed by a machine. Finally we verify the convergence efficiency and accuracy of the immune genetic algorithm in solving 10 standard job shop scheduling problems. The verification results indicate that it is better than the existing immune algorithm, simple genetic algorithm and some traditional optimal design methods.
出处 《机械科学与技术》 CSCD 北大核心 2007年第6期681-686,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(59990470)资助
关键词 免疫系统 一般遗传算法 免疫遗传算法 车间调度 immune system simple genetic algorithm immune genetic algorithm job shop scheduling
  • 相关文献

参考文献16

  • 1Gaspar A,Collard P.From gas to artificial immune systems:improving adaptation in time dependent optimization[ A].In:Proceedings of the Congress on Evolutionary Computation[C],Washington,DC,10-16 July 1999,254~265 被引量:1
  • 2Leandro Nunes de Castro,Jon Timmis.An Introduction to Artificial Immune Systems:A New Computational Intelligence Paradigm[ M].Springer-Verlag,2002 被引量:1
  • 3Emma Hart and Peter Ross.The evolution and analysis of a potential antibody library for use in job-shop scheduling[ A].In:New Ideas in Optimization[ C],McGraw-Hill,London,1999 被引量:1
  • 4De Castro L M,et al.The clonal selection algorithm with engineering applications[ A].Genetic and Evolutionary Computation Conference[C],Las Vegas,USA,2000:36~37 被引量:1
  • 5Gasper A,Collard P.From GAs to artificial immune systems:improving adaptation in time dependent optimization[ A ].In:Proceedings of the Congress on Evolutionary Computation[C],Washington,DC,10-16 July 1999 被引量:1
  • 6Eiben A E,et al.Orgy in the computer:multi-parent reproducetion in genetic algorithms[A].In:Proceedings of the Third European Conference on Artificial Life[ C ],number 929 in LNAI,Springer,Berlin,1995:934~945 被引量:1
  • 7Eiben A E,et al.An empirical investigation of multi-parent recombination operators in evolution strategies[ J ].Evolutionary Computation,1997,5 (3):347~365 被引量:1
  • 8Esquivel S,Leiva H,Gallard R.Multiple crossovers between multiple parents to improve search in evolutionary algorithms[A].In:Proc.Congress on Evolutionary Computation(IEEE)[ C ],Washington D C,2001 被引量:1
  • 9Jiao L,Wang L.A novel genetic algorithm based on immunity[J].IEEE Transactions on System,Man and Cybernetics,2000,30(5):552~561 被引量:1
  • 10Abramson N.Information Theory and Coding[ M].McGrawHill,New York 被引量:1

同被引文献88

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部