摘要
In this study, a forward cDNA library was constructed by suppression subtractive hybridization using seedling leaves of CN165, a drought-tolerant maize inbred line. In the suppression subtractive hybridization (SSH) library, 672 positive clones were picked up randomly. After polymerase chain reaction (PCR) of each clone, all the single clones were sequenced. Totally 598 available sequences were obtained. After cluster analysis of the EST sequences, 80 uniESTs were obtained, among which 57 uniESTs were contigs and 23 uniESTs were singlets. The results of BLASTN showed that all the uniESTs had homologous sequences in the nr database. The BLASTX results indicated that 68 uniESTs had significant protein homology, 8 uniESTs with homology of unknown proteins and putative proteins, and 4 uniESTs without protein homology. Those drought stress-induced genes were involved in many metabolism pathways to regulate plant growth and development under drought stress.
In this study, a forward cDNA library was constructed by suppression subtractive hybridization using seedling leaves of CN165, a drought-tolerant maize inbred line. In the suppression subtractive hybridization (SSH) library, 672 positive clones were picked up randomly. After polymerase chain reaction (PCR) of each clone, all the single clones were sequenced. Totally 598 available sequences were obtained. After cluster analysis of the EST sequences, 80 uniESTs were obtained, among which 57 uniESTs were contigs and 23 uniESTs were singlets. The results of BLASTN showed that all the uniESTs had homologous sequences in the nr database. The BLASTX results indicated that 68 uniESTs had significant protein homology, 8 uniESTs with homology of unknown proteins and putative proteins, and 4 uniESTs without protein homology. Those drought stress-induced genes were involved in many metabolism pathways to regulate plant growth and development under drought stress.