期刊文献+

核Hebbian算法在加氢脱芳烃过程中的建模应用 被引量:1

Modified kernel Hebbian algorithm with application to modeling of hydro-dearomatization process
下载PDF
导出
摘要 提出一种采用改进核Hebbian算法的加氢脱芳烃过程的递推产品质量建模方法,用于实时估计终端分馏产品的质量指标。通过利用核Hebbian算法的中间结果,计算中心化的核矩阵特征值,进而由核主元回归方法得到非线性动态质量模型。该递推滑动窗建模方法无需计算和保存整个核矩阵,并验证了所得到的闪点模型在正常和故障工况下均具有足够的精度。 A modified kernel Hebbian algorithm (MKHA) was proposed to integrate with the kernel principal component regression (KPCR) method for recursive product quality modeling of a two-stage hydro-dearomatization process. The approach to calculating the eigenvalues of centering kernel matrix was derived and the whole algorithm is formulated in a recursive mode. The proposed modeling strategy has an advantage of no need to calculate and store the kernel matrix. The obtained recursive nonlinear dynamic flash point model showed satisfying precision under both normal and faulty operations, and comparison studies with traditional offline KPCR modeling were presented.
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第6期1518-1522,共5页 CIESC Journal
基金 国家自然科学基金项目(20576116) 德国洪堡基金会资助。~~
关键词 加氢脱芳烃 产品质量建模 统计学习理论 Hebbian算法 hydro-dearomatization product quality modeling statistical learning theory Hebbian algorithm
  • 相关文献

参考文献10

  • 1Lin Shixiong(林世雄).Petroleum Refinery Engineering (石油炼制工程).3rd ed.Beijing:Petrochemical Engineering Publishing Company,2000 被引量:1
  • 2段爱军,万国赋,赵震.柴油催化加氢脱芳烃研究进展[J].现代化工,2005,25(3):14-18. 被引量:8
  • 3Komulainen T,Sourander M,jamsa-Jounela S-L.An online application of dynamic PLS to a dearomatization process.Comput.Chem.Engng.,2004,28(11):2611-2619 被引量:1
  • 4Liikala T.The use of fault detection in model predictive control of a refinery process unit[D].Finland:Helsinki University of Technology,2005 被引量:1
  • 5Wang Haiqing,Song Zhihuan,Li Ping.Fault detection behavior and performance analysis of PCA-based process monitoring methods.Ind.Eng.Chem.Res.,2002,41:2455 2464 被引量:1
  • 6Yeh T M.Huang C T.Estimate of process compositions and plantwide control from multiple secondary measurements using artificial neural networks.Comput.Chem.Engng.,2003.27:55-72 被引量:1
  • 7Scholkopf B,Smola A J.Learning with Kernels:Support Vector Machines,Regularization,Optimization,and Beyond.MA:The MIT Press,2002 被引量:1
  • 8Shawe-Taylor J,Cristianini N.Kernel Methods for Pattern Analysis.UK:Cambridge University Press,2004 被引量:1
  • 9Kim K I,Franz M,Scholkopf B.Iterative kernel principal component analysis for image modeling.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(9):1351-1366 被引量:1
  • 10Sanger T D.Optimal unsupervised learning in a single-layer linear feedforward neural netowork.Neural Netzvorks.1989,12:459-473 被引量:1

二级参考文献10

共引文献7

同被引文献7

  • 1Yeh T M, Huang C T. Estimate of process compositions and plantwide control from multiple secondary measurements using artificial neural networks. Comput. Chem. Engng. , 2003, 27: 55-72. 被引量:1
  • 2Wang Haiqing, Li Ping, Gao Furong, Song Zhihuan, Ding Steven X. Kernel classifier with adaptive structure and fixed memory for process diagnosis. AIChE J. , 2006, 52 (10) : 3515-3531. 被引量:1
  • 3Scholkopf B, Smola A J. I.earning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MA: The MIT Press, 2002. 被引量:1
  • 4Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. UK: Cambridge University Press, 2004. 被引量:1
  • 5Kim K I, Franz M, Scholkopf B. Iterative Kernel principal component analysis for image modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (9): 1351-1366. 被引量:1
  • 6Hoegaerts L, De Lathauwer L, et al. Efficiently updating and tracking the dominant Kernel principal components. Internal Report 05-01, ESAT-SISTA [R/OL]. Belgium: K U Leuven, 2005. http: //www. esat. kuleuven. ac. be/ sista/lssvmlab. 被引量:1
  • 7Downs J J, Vogel E F. A plant-wide industrial process control problem. Comput. Chem. Engng., 1993, 17 (3): 245-255. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部