期刊文献+

强烈侵蚀产沙区小流域土壤侵蚀强度的支持向量机预报模型研究 被引量:7

Application of Support Vector Regression method in predicting soil erosion intensity of small watershed in the insensitive erosion areas
下载PDF
导出
摘要 土壤侵蚀产沙是一个极其复杂的物理过程,其物理机理十分复杂,往往难以用数学方式来描述.该文针对区域土壤侵蚀机理不甚清晰、基础资料收集困难等问题,探索性地在小流域土壤侵蚀预报中引入支持向量机理论与方法,并以皇甫川强烈侵蚀区小流域为例构建小流域土壤侵蚀模数预报的支持向量机预报模型.研究表明,该方法的模拟和预测精度都明显高于最小二乘法;支持向量机预报模型依据多年的反映区域侵蚀产沙演进规律的侵蚀产沙监测资料,建立小流域土壤侵蚀模数的支持向量机预报模型,是对流域侵蚀产沙复杂运行机制的综合体现. Soil erosion is a very complex physical process and it is difficult to be characterized by mathematic equations. In allusion to the problems of indistinct mechanism of soil erosion and difficultly collecting of basic data, Support Vector Regression (SVR) was introduced to predict the soil erosion of small watershed exploringly. Taking the most intensive soil erosion watershed in Huangfuchuan Catchments as an example, the predicting model with SVR method for soil erosion modulus was formed. It indicates that the SVR method is more excellent than the general method. Based on the soil erosion data reflecting the soil erosion rules, forming the predicting model with SVR method for soil erosion is an integrated embodiment for the complex process of soil erosion.
出处 《北京林业大学学报》 EI CAS CSCD 北大核心 2007年第3期93-98,共6页 Journal of Beijing Forestry University
基金 "863"国家高技术研究发展计划(2001AA527015) 国家自然科学基金项目(10601064)
关键词 土壤侵蚀 支持向量机 小流域 预报 soil erosion, Support Vector Regression(SVR), small watershed, predicting
  • 相关文献

参考文献23

二级参考文献115

共引文献2679

同被引文献112

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部