期刊文献+

具高阶耗散的圣维南方程组的Cauchy问题 被引量:2

Cauchy Problem for Saint-Venant Equations with Higher Order Dissipation
下载PDF
导出
摘要 考虑具高阶耗散摩阻力的圣维南方程组的Cauchy问题,在一定的假设条件下,得到了其经典解产生奇性的结果,并对结果进行了合理的解释,验证了对于拟线性双曲方程组来说,高阶耗散并不能保证其经典解的整体存在性问题. the Cauchy problem for Saint-Venant equations with higher order dissipative frictional resistance is studied. Under certain hypotheses, the formation of singularities for classical solution is obtained, and proper explanation of the results are given too. To some extent, the results verify that the high order dissipation can not guarantee the smoothness of classical solutions to quasilinear hyperbolic systems.
出处 《华北水利水电学院学报》 2007年第3期107-109,共3页 North China Institute of Water Conservancy and Hydroelectric Power
基金 国家自然科学基金项目(10571024) 河南省自然科学基金项目(200511051700) 河南省教育厅自然科学基金项目(200510078005)
关键词 柯西问题 圣维南方程组 破裂 生命区间 Cauchy problem Saint-Venant equations blow-up life span
  • 相关文献

参考文献6

  • 1LI TATSIEN.Global smooth solutions for quasilinear hyperbolic systems[M] //Research in applied mathematics 32.Wiley:MASSON/JOHN,1994. 被引量:1
  • 2P D LAX.Hyperbolic systems of conservation laws[J].Comm.Pure Appl.Math.1957(10):537 -566. 被引量:1
  • 3T NISHIDA.Global smooth solutions for the second order quasilinear wave equations with the first order dissipation[R].d'Orsay:Publications Mathematiques,1978. 被引量:1
  • 4KONG DE-XING.Cauchy problem for quasilinear hyperbolic system with higher order dissipative terms[J].Nonlinear Differential Equations and Applications,1997 (4):477-489. 被引量:1
  • 5MAHMOOD K,YEVJEVICH V.明渠不恒定流(第一卷)[M].林秉南,译.北京:中国水利水电出版社,1987. 被引量:1
  • 6章梓雄,董曾南编著..粘性流体力学[M].北京:清华大学出版社,1998:490.

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部