期刊文献+

基于地统计学的棉花长势空间变异分析 被引量:8

Cotton Growth Condition Spatial Variance Analysis Based on Geo-statistics
下载PDF
导出
摘要 采用地统计学的变异函数分析方法对我国2006年棉花长势空间变异特性进行了分析,结果表明,基于县域尺度的我国长势指标存在空间异质性。5月真叶数、6月真叶数、7月总果节数、9月成铃数的半方差值随间隔的变化很好的符合高斯理论模型的变化趋势,模型拟合的决定系数变化在0.472~0.856之间,8月成铃数则较好地符合球状理论模型,模型拟合的决定系数为0.879。空间自相关范围分别是1644.25、1822.61、2293.59、2777.63、1195.56km。5月份单株真叶数99.9%的空间变异是由于结构性因素的原因造成的,7月份的单株总果节数的96.7%的空间变异是由于结构性因素的原因造成的,6月单株真叶数、8月单株成铃数、9月单株成铃数的空间分布的结构比分别为0.61、0.929、0.869。 Semi variance analysis of Geo-statistics was used to quantify the spatial heterogeneity of cotton growing condition in China in 2006. the results showed that: The spatial heterogeneity of cotton growth indicator indices does exist, The semi-variograms of mature bolls per plant in August were best described by spherical model. The model determination coefficient is 0. 879. The rest semi-variograms of true leaves per plant in May and June, and fruit nodes per plant in July and mature bolls per plant in September were best described by Gaussion model. The model's determination coefficients (R^2) are 0. 627,0. 472,0. 856,0. 811, respectively. The scales of spatial heterogeneity were1644.25, 1822.61,2293.59,2777.63,1195. 56 km respectively from May to September. The spatial variability of cotton growing condition was mainly caused by structural factors with spatial structural ratio 〉 25 %. The structural ration were 0. 999,0. 61,0. 967,0. 929,0. 869 respectively, The scales of spatial heterogeneity of them showed a positive linear correlation with cotton growing age before Aug 15th, but show a negative correlation with cotton growing age subsequently.
出处 《棉花学报》 CSCD 北大核心 2007年第3期214-219,共6页 Cotton Science
基金 科技部公益项目资助(2005DIB4J046)
关键词 棉花 长势 空间分析 半方差 地统计学 cotton growth condition spatial analysis semi-variance
  • 相关文献

参考文献13

二级参考文献76

共引文献835

同被引文献97

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部