期刊文献+

系数快速振荡的抛物型方程求解的新方法

A New Method for Parabolic Equations with Highly Oscillating Coefficients
下载PDF
导出
摘要 本文将小波数值均匀化方法用于求解系数快速振荡的抛物型方程,对系数周期快速振荡、局部快速振荡、随机快速振荡的抛物型方程分别进行了求解。由于所求方程难以得到解析解,以精细剖分有限体积法的解作为参照解。计算结果表明,与精细剖分的有限体积法相比较,小波数值均匀化方法既大大节省了计算时间又保持了较好的计算精度。 The principle of wavelet-based homogenization is introduced. The method is applied to parabolic equations with three kinds of highly oscillating coefficients. Because it is hard for these equations to get the resolutional results, the referrence resolution is obtained from the results of finite volume with fine mesh. According to the resolutional results, the numerical results show that the proposed method is better than the finite volume method, not only in calculation but also in accuracy.
出处 《计算机工程与科学》 CSCD 2007年第7期67-70,共4页 Computer Engineering & Science
关键词 小波 均匀化 多分辨分析 有限体积法 wavelet homogenization multiresolution analysis finite volume method
  • 相关文献

参考文献8

  • 1薛禹群,叶淑君,谢春红,张云.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,35(7):7-13. 被引量:66
  • 2吕兆华.泡沫型多孔介质中非达西流动特性的研究[J].工程力学,1998,15(2):57-64. 被引量:23
  • 3Thomas Y H,Wu X H.A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous media[J].Journal of Computational Physics,1997,134 (1):169-189. 被引量:1
  • 4Thomas Y H,Wu X H,Cai Z Q.Convergence of a Multiscale Finite Element Method for Elliptic Problems with Rapidly Oscillation Coeffients[J].Mathematics of Computation,1999,68(227):913-943. 被引量:1
  • 5Jenny P,Lee S H.Multiscale Finite-Volume Method for Elliptic Problems in Subsurface Flow Simulation[J].Journal of Computational Physics,2003,187 (1):47-67. 被引量:1
  • 6Alain B,Jacques-Louis L,George P.Asymptotic Analysis for Periodic Structures[M].North-Holland:Amsterdam,1978. 被引量:1
  • 7Mihai D,Bjorn E.Wavelet-Based Numerical Homogenization[J].SIAM Journal on Numerical Analysis,1998,35 (2):540-559. 被引量:1
  • 8Mehraeen S,Juin-Shyan C.Wavelet-Based Multiscale Projection Method in Homogenization of Heterogeneous Media[J].Finite Elements in Analysis and Design,2004,40(12):1665-1679. 被引量:1

二级参考文献9

  • 1[1]Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of computational physics,1997,134:169-189. 被引量:1
  • 2[2]Hou T Y, Wu X H, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J].Math. Comput., 1999,68(227):913-943. 被引量:1
  • 3[3]Cruz M E, Petera A. A parallel Monte-Carlo finite-element procedure for the analysis of multicomponent random media [J]. Int. J. Numer. Methods Eng., 1995,38:1087-1121. 被引量:1
  • 4[4]Dykaar B B, Kitanidis P K. Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach:1.method [J]. Water Resources Research,1992,28(4):1155-1166. 被引量:1
  • 5[5]Durlofsky L J. Representation of grid block permeability in coarse scale models of randomly heterogeneous porous-media [J]. Water Resources Research,1992,28:1791-1800. 被引量:1
  • 6[6]McCarthy J F. Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media [J]. Transport in Porous Media, 1995,19:123-137. 被引量:1
  • 7[7]Babuska I, Szymczak W G. An error analysis for the finite element method applied to convection-diffusion problems [J]. Comput. Methods Appl. Math. Engrg., 1982,31:19-42. 被引量:1
  • 8[8]Babuska I, Osborn E. Generalized finite element methods:Their performance and their relation to mixed methods [J].SIAM J. Numer. Anal., 1983,20:510-536. 被引量:1
  • 9[9]Babuska I, Caloz G, Osborn E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J. Numer. Anal., 1994,31:945-951. 被引量:1

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部