期刊文献+

神经网络与有限元结合在轧机板形预报中的应用研究 被引量:2

Study on the application of combining Neural Network with finite element for the prediction of mill flatness
下载PDF
导出
摘要 通过有限元仿真分析,较准确的模拟了带钢轧制过程,获取对轧机板形影响较大的参数值,并将其结果作为训练样本对神经网络进行训练,建立了较为理想的基于神经网络的板形预测模型,实现了轧制过程中的板形参数的预报。仿真结果表明该神经网络与有限元结合的板形预测模型可获得良好的预测精度,弥补了传统板形预测模型的预测精度不能满足板形在线控制要求的缺陷。 By using finite element simulation analysis, the rolling processing of strip steel has been rather truthfully simulated and some parameters that have essential influence upon mill flatness have been obtained with the results to be served as learning sample books for exercising the neutral network, Finally, an ideal flatness prediction model, based on BP neural network, is established so that the prediction of the flatness parameters in rolling operation can be accomplished, Simulation result shows that the flatness prediction model which combines BP neural network with finite element can get a good precision in the prediction and compensates the defects that the precision of traditional flatness predicting model can't meet the need of on - control.
出处 《重型机械》 2007年第3期5-8,共4页 Heavy Machinery
关键词 板形预测 BP神经网络 有限元 flatness prediction BP Neural Network finite element
  • 相关文献

参考文献3

  • 1龙志飞,岑松编著..有限元法新论 原理·程序·进展[M].北京:中国水利水电出版社,2001:319.
  • 2陶红勇,王京,陆秀志.神经网络在板形控制中的应用[J].轧钢,2003,20(4):10-12. 被引量:8
  • 3王国栋,刘相华等著..金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000:453.

共引文献7

同被引文献34

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部