期刊文献+

一种用于道路交通标志识别的颜色—几何模型 被引量:21

Color-geometric model for traffic sign recognition
下载PDF
导出
摘要 交通标志检测是道路交通标志识别系统中的一个关键问题。本研究在分析中国道路交通标志的颜色和几何形状这2种先验特征的基础上,提出了颜色形状对的概念,并据此构造了一种新的交通标志颜色—几何模型。该模型由交通标志的3种基本颜色和5种基本形状构成,充分体现了颜色与几何形状具有唯一确定性关系这一重要特点。因此,基于颜色-几何模型的交通标志检测可以同时实现交通标志的粗分类,将116种中国道路交通标志直接分为7个子类,降低了道路交通标志识别系统的复杂性。仿真实验研究表明,采用该模型的交通标志检测与粗分类的正确率均达到了100%,具有良好的实时性和有效性。 Detecting traffic sign plays an important role in traffic sign recognition system. According to the color and shape characteristics of Chinese traffic signs a novel color-geometric modeling method based on color-shape pair for traffic sign recognition is presented in this paper. This model only focuses on the stable relationship between color and shape in Chinese traffic signs, which is composed of three essential colors and five essential geometrical shapes. Accordingly, based on above color-geometric model, Chinese traffic signs are detected and 116 kinds of Chinese traffic signs are classified into seven classes, which reduce the complexity of the traffic sign recognition system. The simulation experiment results show that adopting the proposed model the correctness rate of traffic sign detection and coarse classification could achieve 100% , which verifies the robustness, real-time performance and effectiveness of this method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第5期956-960,共5页 Chinese Journal of Scientific Instrument
关键词 道路交通标志识别 颜色-几何模型 颜色形状对 先验信息 traffic sign recognition (TSR) color-geometric model color-shape pair prior information
  • 相关文献

参考文献10

  • 1LOY G,BARNES N.Fast shape-based road sign detection for a driver assistance system[C].Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,2004. 被引量:1
  • 2DOUVILLE P.Real-time classification of traffic sign[M].Academic Press,2000:185-193. 被引量:1
  • 3PACLIK Pavel,Jana.Road sign classification without color information[C].Proceedings of the 6th Conference of Advanced School of Imaging and Computing,2000. 被引量:1
  • 4HSU S H,HUANG C L.Road sign detection and recognition using matching pursuit method[J].Image and Vision Computing,2001:119-129. 被引量:1
  • 5PICCIOLI G,MICHELI De E,CAMPANI M.A robust method for road sign detection and recognition[J].Computer Vision,1994:495-500. 被引量:1
  • 6SHNEIER M.Road sign detection and recognition[J].Computer Vision and Pattern Recognition,2005. 被引量:1
  • 7YUTAKA I,YUZO H.Segmentation of road sign symbols using opponent-color filters[C].Proceedings of 11th World Congress on ITS,2004. 被引量:1
  • 8de la Escalera,Luis E.Moreno,Miguel Angel Salichs,Jose Maris Armingol,Road traffic sign detection and classification,1997:848-859. 被引量:1
  • 9MIURA,TSUYOSHI K,YOSHIIAKI SH.An Active vision system for real-time traffic sign recognition[C].IEEE International Conference on Intelligent Transportation System,2000:52-57. 被引量:1
  • 10ESCALERA A D L,ARMINGOL J M,MATA M.Traffic sign recognition and analysis for intelligent vehicles[J].Image and Vision Computing,2003,21:247-258. 被引量:1

同被引文献138

引证文献21

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部