期刊文献+

Implementation of a Controlled-Phase Gate and Deutsch-Jozsa Algorithm with Superconducting Charge Qubits in a Cavity

Implementation of a Controlled-Phase Gate and Deutsch-Jozsa Algorithm with Superconducting Charge Qubits in a Cavity
下载PDF
导出
摘要 Based on superconducting quantum interference devices (SQUIDs) coupled to a cavity, we propose a scheme for implementing a quantum controlled-phase gate (QPG) and Deutsch-Jozsa (D J) algorithm by a controllable interaction. In the present scheme, the SQUID works in the charge regime, and the cavity field is ultilized as quantum data-bus, which is sequentially coupled to only one qubit at a time. The interaction between the selected qubit and the data bus, such as resonant and dispersive interaction, can be realized by turning the gate capacitance of each SQUID. Especially, the bus is not excited and thus the cavity decay is suppressed during the implementation of DJ algorithm. For the QPG operation, the mode of the bus is unchanged in the end of the operation, although its mode is really excited during the operations. Finally, for typical experiment data, we analyze simply the experimental feasibility of the proposed scheme. Based on the simple operation, our scheme may be realized in this solid-state system, and our idea may be realized in other systems.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第5期821-825,共5页 理论物理通讯(英文版)
基金 The project supported by the Natural Science Foundation of Hunan Province under Grant No. 06jj50014, Key Project Foundation of the Education Commission of Hunan Province under Grant No. 06A055 and National Natural Science Foundation of China under Grant No. 10574126
关键词 a quantum controlled-phase gate Deutsch-Jozsa algorithm superconducting quantum interference device charge qubit 量子受控相位门 Deutsch-Jozsa算法 超导量子干涉器件 电荷量子位 腔场
  • 相关文献

参考文献39

  • 1D.Vion,A.Aassime,A.Cottet,et al.,Science 296 (2002)886. 被引量:1
  • 2Y.Yu,S.Han,X.Chu,Shih-I Chu,and Z.Wang,Science 296 (2002) 889. 被引量:1
  • 3Y.Makhlin,G.Schon,and A.Shnirman,Rev.Mod.Phys.73 (2001) 357. 被引量:1
  • 4Yu.A.Pashkin,T.Yamamoto,O.Astaflev,et al.,Nature (London) 421 (2003) 823. 被引量:1
  • 5T.Yamamoto,Yu.A.Pashkin,O.Astaflev,et al.,Nature (London) 425 (2003) 941. 被引量:1
  • 6S.L.Zhu,Z.D.Wang,and Paolo Zanardi,Phys.Rev.Lett.94 (2005) 100502. 被引量:1
  • 7S.L.Zhu and Z.D.Wang,Phys.Rev.Lett.89 (2002)097902. 被引量:1
  • 8J.Q.You,J.S.Tsai,and F.Nori,Phys.Rev.Lett.89(2002) 197902. 被引量:1
  • 9J.Q.You and F.Nori,Phys.Rev.B 68 (2003) 064509. 被引量:1
  • 10S.L.Zhu,Z.D.Wang,and K.Yang,Phys.Rev.A 68(2003) 034303. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部